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Abstract

This paper presents a new constitutive model for the simulation of reinforcing steel bars used in

common reinforced concrete structures and it is designed to be used for general loading cases.

The model includes the well-known Guiffrè-Menegotto-Pinto softened branch, although new

expressions are proposed for the evolutions of the curvature-related parameter and of the yield

surface. The constitutive relation is enhanced with an innovative and simplified proposal for

considering ultra-low-cycle fatigue effects. This phenomenon is particularly important for struc-

tures that undergo a small number of very large displacement cycles, e.g. when subjected to

intense seismic events. It is known that in those situations the steel reinforcements experience

a continuum and significant strength decrease that ultimately leads to premature failure induced

by fatigue.

The model’s mathematical description and some relevant implementation issues are de-

scribed. Its accuracy is assessed by means of a series of validation tests using experimental

data available in the bibliography.

Keywords: Concrete Reinforcing Steel, Constitutive Model, Cyclic Response,

Ultra-Low-Cycle Fatigue, Finite Element Method

1. Introduction

It is generally accepted that steel reinforcements have a predominant effect on the hysteretic

response of properly designed reinforced concrete (RC) members. Naturally, this implies that
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the accuracy of the steel reinforcement simulation within numerical models is determinant to the

quality of the results.

The reinforcing steel monotonic response is reasonably easy to be simulated with accuracy

when the initial elastic response, the yielding plateau, when present, and the strain-hardening

branch are properly simulated (see Figure 1a). On the other hand, the response under cyclic and

alternating loading is more challenging due to the complexity associated with several simulta-

neous effects. The unloading and reloading branches are characterized by a stiffness similar to

the one occurring at first loading. Moreover, the response is influenced by two additional phe-

nomena: After experiencing plastic deformation the stress-strain response after reversal presents

the so-called Bauschinger effect, which is associated with the anticipation of the departure from

the elastic stiffness after reversal (see Figure 1b). Secondly, the response experiences a combi-

nation of kinematic hardening (elastic range translation) and isotropic hardening (elastic range

expansion/contraction).

Another significant material phenomenon is the so-called ultra-low-cycle fatigue. This effect

occurs when the steel reinforcements experience large inelastic cyclic deformations, which can

be caused by earthquake-induced forces, and results into significant steel resistance degradation

that may lead to collapse by fracture at much lower stress levels than for the virgin material.

Although this effect is often disregarded in modelling and design situations, a significant number

of studies were carried out recently, e.g. studies with different classes of steel [28, 13] and on

the interaction with other effects like corrosion [2]. In addition, several fatigue-life models have

been proposed over the years, e.g. the Coffin-Mason model [6, 23], the Koh-Stephens model

[17] and the Mander-Panthaki model [22].

After calibration, these models can predict with sufficient accuracy the effect of low-cycle

fatigue on the reinforcements. Nevertheless, these fatigue-life models are usually defined in

terms of total or plastic strain with the number of cycles to failure, thus the direct implementation

on constitutive models to be incorporated in finite element models is not straightforward.

This paper tries to mitigate this problem by proposing a simplified model that can simulate

the main aspects of the phenomena described before, with particular focus on the ultra-low-

cycle fatigue effect, defined in this case for less than 50 full cycles with plastic deformation.
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Other effects are not included due to the limited impact they would have on the accuracy of

the simulation or to simplify the formulation and improve the computational efficiency of the

model. These are the cases of the clear yield plateau observed on mild steel bars, of buckling on

compressed bars and of asymmetric response under alternating tension and compression forces.

Furthermore, strain-rate effects for dynamic loading are also not considered and all material

parameters should be obtained from quasi-static tests. Nevertheless, the parameters may be

tuned to improve the simulation accuracy for dynamic analyses, e.g. by adjusting the yield

stress value.

2. Low-cycle fatigue

Fatigue can be seen as the process that leads to damage or to failure of a structural member

due to repeated loading. In particular, low-cycle fatigue develops when this phenomenon occurs

with a relative small number of cycles. In contrast, medium-cycle and high-cycle fatigue occurs

for a larger number of cycles, generally between 103 to 108 cycles. This last type is mostly

associated with service loading and is being studied for several decades, e.g. see Tilly’s review

on steel reinforcement fatigue [32]. Some examples of civil engineering structures that require

specific studies on the fatigue effect are bridges subjected to traffic or to intense thermal loads

[30, 29] and high-rise buildings or wind turbines, and their components, when excited by wind

loads [14, 15].

The fatigue-life curve of a material can be defined as the number of cycles Nc required to

produce a fatigue failure for a given stress or strain amplitude. According to Brown and Kunnath

[4], for an engineering alloy (e.g. steel) this curve takes the form represented in Figure 2. When

loading amplitude is large, but below the ultimate strength for a single load application, there

will be inelastic deformation and failure occurs after a reduced number of cycles, typically under

1000 (low-cycle fatigue). On the other hand, elastic deformation will occur when the loading

amplitude is small and the number of cycles required to produce fatigue failure is very large,

often in the order of millions (high-cycle fatigue). For very small loading amplitudes, fatigue

will not occur or the number of cycles to induce failure is so large that this phenomenon is

neglected.
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Fatigue develops by the damage generated and by the creation and propagation of fatigue

cracks due to the effect of repeated loading. Ultimately, this will lead to failure when the speci-

men does not have sufficient resistance to withstand the prescribed loading. During this process,

cyclic strength and stiffness degradation can be observed in the response of reinforcing steel

bars.

One question arises regarding what would be the number of cycles expected to occur during

a seismic event. According to Panthaki [26], an earthquake load can result in large tension and

compression strains in the reinforcements and between 2 to 10 full cycles for common struc-

tures and up to 30 cycles for structures with high natural frequencies (ultra-low-cycle fatigue).

Considering this information, it is possible to conclude that this phenomenon is likely to result

in cyclic degradation, or even in anticipated reinforcement failure.

3. Modelling

Several models have been proposed to simulate the response of steel bars used in reinforced

concrete structures. The most widespread models range from the simpler bilinear or multi-

linear constitutive relations, e.g. the model proposed by Aktan and Karlsson [1] and those with

smooth elastic-plastic transition, like the Ramberg-Osgood model [27], the Guiffrè-Menegotto-

Pinto model [11, 24] and the models proposed by Mander and co-workers [21, 20, 5], to name

a few. In addition, significant developments have been made to capture buckling of longitudi-

nal bars. This research led to several proposals, e.g. the models suggested by Monti and Nuti

[25], by Gomes and Appleton [12], and more recently by Dhakal and Maekawa [8], all based

on the Guiffrè-Menegotto-Pinto model. Another significant innovation was made by Dodd and

Restrepo-Posada [9] in the simulation of the asymmetrical behaviour under tension and com-

pression observed in the experiments, by means of the so-called natural coordinate system.

This paper presents a new model for the simulation of reinforcing steel bars used in common

reinforced concrete structures. The model is designated as Refined Reinforcing Steel (RSteel)

and consists of a base model and one sub-model. The base model adopts initially a bilinear

relation until the first load reversal is reached, followed by a softened branch to simulate the

Bauschinger effect. The equation of the softened branch is the well-known Guiffrè-Menego-
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tto-Pinto [24] equation improved by Filippou et al. [10]. Nevertheless, a new expression is

proposed for the evolution of a curvature-related parameter. In addition, the base model adopts

a new formulation for the cyclic hardening rule and is complemented by a specific sub-model to

simulate the ultra-low-cycle fatigue phenomenon.

3.1. Base model

The RSteel model general equation is the following:

σs = Es
(
εs − εsp

)
, (1)

where εsp is the plastic strain that can be computed by subtracting the elastic strain from the

total strain, using:

εsp = εs −
σs

Es
. (2)

The yield and ultimate strength are computed from:

σsy = Esεsy, (3)

σsu = σsy + β0Es
(
εsu − εsy

)
, (4)

where β0 represents the initial strain-hardening modulus (see Figure 3a).

In the proposed model, the strain-hardening modulus changes throughout the analysis as

follows1:

β±
(
εmax

)
=


β0, if εmax ≤ εsy

β0

(
1 − εmax−εsy

εsu−εsy

)
, if εsy < εmax ≤ εsu

0, otherwise

, (5)

where εmax stores the maximum absolute value of the strain reached previously. This definition

implies that β± changes linearly between β0 and zero at εmax = εsu, as represented in Figure 4a. It

1The symbol β± references both β+ and β− which are associated with the positive and negative yield surface,

respectively.
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should be emphasized that β+ and β− are only updated after a negative and positive load reversal,

respectively.

The RSteel model adopts the following definition for the yield surface2:

φ±∗ = ±σsu ∓ β
±Esεsu + β±Esεs. (6)

This definition implies that the positive and negative yield surfaces rotate about the points

A+ or A−, respectively (see Figure 3b). This allows adding isotropic cyclic hardening to the

simulation because the rotation leads to a homothetic expansion of the yield surface in both

loading directions.

The adopted equation for the softened branch corresponds to the well-known Guiffrè-Mene-

gotto-Pinto expression [11, 24]:

σ∗s = β± ε∗s + (1 − β±)
ε∗s{

1 + (ε∗s)R
}1/R , (7)

and the enhanced coordinate transformation proposed by Filippou, Popov and Bertero [10] is

assumed:

ε∗s =
εs − εsa

εs0 − εsa
, σ∗s =

σs − σsa

σs0 − σsa
, (8)

where (εsa, σsa) represents the strain and stress at the inversion point preceding each branch and

(εs0, σs0) represents the strain and stress at the intersection between the elastic and hardening

slopes (see Figure 3b).

For the proposed model, the coordinates (εs0, σs0) of each softened branch can be com-

puted by equating the envelope curve with the equation of a line with slope Es passing through

(εsa, σsa):

φ±∗ = σsa − Esεsa + Esεs, (9)

2The symbols ± and ∓ are used to condense two equations. ± should be substituted by + for the first equation

(φ+
∗ ) and by − for the second equation (φ−∗ ), and vice-versa for ∓.
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leading to:

ε±s0 =
−σsa + Es εsa ∓ β

± Es εsu ± σsu

(1 − β±) Es
, (10)

σ±s0 = ±σsu ∓ β
±Esεsu + β±Esεs0. (11)

The parameter R in equation (7) is related to the curvature of the transition between the

elastic and the hardening branches. To enhance the flexibility and the representativeness of the

model, the following alternative definition for the evolution of this parameter is adopted:

R
(
εac

sp

)  R0, if εac
sp ≤ εsy

αR0, if εac
sp > εsy

, (12)

with:

α = 1 − cR

1 −

exp
(
−εac

sp/εsy
)

exp (−1)


nR
100

 , (13)

where R0, cR, nR are material parameters to be identified and εac
sp represents the accumulated

plastic strain until the previous load reversal. At the end of ns load steps, this variable can be

computed using:

εac
sp =

ns∑
j=1

∣∣∣∆εsp, j
∣∣∣, (14)

where ∆εsp, j represents the plastic strain increment at load step j, which can be easily computed

using the values returned by equation (2).

The cR parameter represents a reduction factor for R and parameter nR may be used to change

the evolution of this reduction. Figure 4b presents the effect of these parameters on the progress

of R normalized by its initial value.

3.2. Ultra-low-cycle fatigue sub-model

The most obvious parameters that can feed the model with information about the fatigue induced

in the material are the number and the amplitude of the cycles the bar is subjected. However,
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under general loading cases, the stress-strain history is not repetitive as in fatigue tests. As a

result, alternative state variables must be used for this purpose. The accumulated plastic strain

experienced by the bar throughout the loading history
(
εac

sp

)
defined in equation (14) is a natural

choice. Other parameters may be used, e.g. Suidan et al. [31] proposed the so-called Rainflow

Cycle Counting method to compute an equivalent strain amplitude from random strain histories,

like the ones resulting from seismic events.

To investigate the feasibility of using the accumulated plastic strain, the experimental data

obtained by Brown et al. [3, 4] is used. The work developed by these authors consisted of 34

low-cycle fatigue tests with constant amplitude. The tested reinforcements were #6, #7 and #8

bars, which correspond to diameters of 19.1mm, 22.2mm and 25.4mm, respectively. The steel

used was Grade 60 with the following mechanical properties: σsy = 420MPa; σsu = 620MPa;

εsu = 8% − 9%. More information about these tests are available in the references [3, 4].

The data reported in these publications for the number of cycles at failure are associated

with the number of half cycles, instead of the number of full cycles required for the effective

failure of the specimen. This data was corrected in order to adopt the quantity N f
c as the number

of full cycles. Table 2 in the Appendix presents a summary of the results reported by Brown

et al. [4], where εa and εap represent the strain and the plastic strain amplitudes, and Ncr
c and

N f
c the number of cycles when the first fatigue crack is identified and when the specimen failed,

respectively.

Figure 5 presents the values of εac
sp for the tests performed by Brown et al. [4]. In this case,

the accumulated plastic strain can be computed using the following expression:

εac
sp (Nc) = 4 εap Nc, (15)

where Nc is either the number of cycles when the first crack is identified or at failure.

This figure shows that this quantity presents some variance and that it is possible to identify

what seems to be a linear dependency between εac
sp and the plastic amplitude of the cycles. This

effect is related to the intensity of the plastic deformation for each cycle. For the same level of

the accumulated plastic strain, larger plastic amplitudes induce higher fatigue-type damage than

smaller plastic amplitudes. This effect represents a loading-related response that is not a material
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property, and therefore, should be expunged. To achieve this, the following linear severity factor

is introduced:

s f =
∆ε∗sp

εsy
, (16)

where ∆ε∗sp represents the amplitude of the plastic deformation between load reversals and εsy

the monotonic yield stress.

Introducing the severity factor into equation (14), it is possible to obtain the definition of the

corrected accumulated plastic strain, in this case defined after nr load reversals:

ε̃ac
sp =

nr∑
r=1

(
εac

sp s f
)
r

=

nr∑
r=1

(
εac

sp ∆ε∗sp

εsy

)
r
. (17)

It is implied in the last equation that ε̃ac
sp is only updated when a load reversal is identified.

Moreover, the possibility of partial unloading should be taken into consideration and an effective

reversal should only be considered when the stress changes from tension to compression or vice

versa (see Figure 8).

Figure 6 presents the same data used for Figure 5 after correcting the accumulated plastic

strain using equation (17). In this case, this expression can be simplified into:

ε̃ac
sp (Nc) =

8 ε2
ap Nc

εsy
. (18)

From Figure 6 it is possible to observe that the introduction of the severity factor significantly

reduces the dependency on the cycle amplitude observed previously. This can be seen by noting

the nearly constant linear regression line, both after the identification of the first crack and at

bar failure. Nevertheless, the same level of dispersion in the results is still observed because this

mainly originates from dispersion already in the original test results.

The procedure adopted to remove the load amplitude dependency is based on observing

what seems to be a linear trend in Figure 5. There is not a well-established physical framework

to support this option, other than it is intuitive that larger amplitude plastic strains tend to be more

penalizing for the reinforcement than smaller amplitude strains. This approach was adopted due
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to its simplicity and because the results obtained showed that the load dependency is significantly

reduced for the cases considered.

The results obtained by Mander et al. [22, 26] are used for further validation of the proposed

ultra-low-cycle fatigue sub-model. In this case, the tests were performed with 5/8in. (15.9mm)

bars made of Grade 40 steel, which under monotonic tension tests returned the following results:

σsy = 331MPa; σsu = 565MPa; εsu = 17%.

Similarly to what was done before, Table 3 in the Appendix presents a summary of the

experimental results obtained. The failure criterion adopted by Mander et al. included a combi-

nation of two conditions [22]. For small amplitude cycles εa < ±2%, the failure was recognized

by monitoring the σc
s/σ

0
s curves (similar to the one presented in Figure 10f) and by identify-

ing when this ratio starts to drop. For larger amplitude cycles, the stress at reversal decreased

continuously, so, it is not possible to identify a well-defined saturation level. Consequently, the

failure was identified by visual observation of fatigue crack initialization.

The results obtained using the proposed procedure are presented in Figure 7. It can be

observed that after removing one outlier value that was clearly out of the general trend, a similar

improvement for the load dependency can be observed. This gives a good indication regarding

the generality of the adopted formulation.

The introduction of the proposed ultra-low-cyclic fatigue sub-model into the RSteel model

is made by multiplying the yield surfaces (6) by a fatigue factor defined by:

γ f = 1.0 − c f

(
ε̃ac

sp

ε f

)n f

, (19)

where ε f is a load independent material property that specifies the value of the corrected accu-

mulated plastic strain
(
ε̃ac

sp

)
at bar failure. The parameters c f and n f control the fatigue evolution.

The parameter c f defines the amount of degradation before failure. Brown et al. [4] con-

cluded from the tests with φ19mm bars that independently of the strain amplitude the degra-

dation is gradual and not too intense until the stress at reversal normalized by its value at first

loading
(
σc

s/σ
0
s

)
is around 0.75. Consequently, the parameter c f should present values of about

0.20-0.30 plus the component associated with cyclic hardening. The parameter n f can be used to

change the evolution of the degradation with the corrected accumulated plastic strain. Figure 9
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presents the effect of changing this parameter on the fatigue factor.

The steel reinforcement bar is considered to have achieved rupture and γ f is set to zero, if

the following condition is met:

ε̃ac
sp > ε f ∧ σs > 0, (20)

in which the last equation enforces that steel reinforcement rupture can only happen under tensile

loading.

If the c f parameter is set to zero this implies that no degradation occurs before the reinforce-

ment rupture. In addition, by adopting very large values for ε f the steel reinforcement failure

will not occur and the ultra-low-cycle fatigue effect is not considered in the simulation.

Figure 10 presents a comparison between the results of the fatigue tests performed by Brown

et al. [4] with φ19mm bars and the results obtained using the RSteel model. Figure 10a to

Figure 10e present the results obtained for cycles with strain amplitudes of 1.50%, 1.75%, 2.50%

and 3.00%, respectively. All the results were obtained with the following model parameters:

Es = 215GPa; β1 = 0.5%; σsy = 540MPa; εsu = 8.5%; and R0 = 3.0; cR = 0.5; nR = 0.5 for the

evolution of the softened curve curvature; and ε f = 21.0; c f = 0.25; n f = 1.00 for the fatigue

sub-model. These parameters where chosen through a manual optimization process carried out

to fit the experimental results.

For the case of the test with strain amplitude of 2.50%, the stress-strain curve is available in

the published work by Brown et al. [4]. This result is compared side-by-side with the results

obtained using the RSteel model in Figure 10c and Figure 10d, respectively. A good match can

be observed between both data sets. The results could have been even more similar but the goal

of using the same parameters for all tests limited the adjusting range for the parameters. Further-

more, the experimental results under compression and tension forces showed some asymmetry

and this effect could not be simulated with the proposed model. Using the definition expressed

in equation (20) means that the rupture of the bar can happen anywhere under tensile loading.

This is visible in the simulations presented in Figure 10.

Figure 10f presents the normalized stress at reversal obtained for all the tests considered.

These data are compared with the experimental results published by Brown et al. [4]. The
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results show that the RSteel model and in particular the ultra-low-cycle fatigue sub-model is able

to simulate all the test results with very good accuracy and always using the same set of model

parameters. This demonstrates that the sub-model is reproducing well the fatigue evolution and

the induced failure.

4. Implementation

The RSteel model may be used in a variety of applications that are left open at this stage. Pos-

sible uses range from the implementation on fibers for cross-section or structural analyses, and

also, in the framework of the finite element method. These applications often require the def-

inition of two main procedures: state determination and stiffness matrix computation, either at

cross-section or at element level. The state determination procedure is described in Algorithm 1

for incremental analyses and Table 1 compiles the pertinent information regarding the model

parameters.

Computing the tangent stiffness matrix requires knowing ∂σs/∂εs that can be obtained by

applying the chain rule, as follows:

∂σs

∂εs
=
∂σs

∂σ∗s

∂σ∗s
∂ε∗s

∂ε∗s
∂εs

. (21)

Recalling the relations presented in equation (8), it is possible to obtain:

∂σs

∂σ∗s
= σs0 − σsa, (22)

∂ε∗s
∂εs

=
1

εs0 − εsa
, (23)

and the remaining term results from equation (7):

∂σ∗s
∂ε∗s

= β± −
β± − 1{

1 + (ε∗s)R
}1+1/R . (24)

It should be noted that the parameters β± and R do not depend on ε∗s because they are only

updated after reversal. The complete set of possible values for ∂σs/∂εs are listed below for each

branch represented in Figure 11a:
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k =
∂σs

∂εs
=



Es, case 1

β0Es, case 2

σs0−σsa
εs0−εsa

{
β± −

β±−1[
1+(ε∗s)R]1+1/R

}
, case 3

0, case 4

. (25)

Figure 11b presents the parameter R effect on the softened branch slope. It can be observed that

increasing values of this parameter leads to sharper slope transitions.

A finite element implementation is straightforward (e.g. see Crisfield [7]). Nonetheless, if

implemented as a beam element further simplifications are needed or additional models must

be included for the other degrees-of-freedom. Special attention should be given to the choice

of appropriate state variables, to check for loading and unloading situations and to identify load

reversals. Furthermore, the use of the tangent stiffness matrix can greatly enhance the computa-

tional efficiency of the numerical model by increasing the convergence rate.

5. Validation

The proposed model is validated against experimental results of common reinforcing bars tested

under cyclic and alternating loading. Experiments with asymmetric tension-compression cycles

were adopted because after concrete cracking the steel reinforcements are more stressed for

tensile loading because the concrete ceases to have a predominant contribution.

Figure 12 presents the data from multiple cyclic tests of reinforcing bars compared with the

results obtained by feeding the strain history into the RSteel model. The model parameters used

in each case are presented in Table 4 in the Appendix.

Figure 12a illustrates the experimental results obtained by Kent and Park [16] with mild

steel (Grade 275) reinforcing bars manufactured in New Zealand. This test was chosen because

it represents a non-alternating cyclic test and in this case the inelastic response is less intense,

hence the fatigue effect is less important as proved by obtaining γ f = 0.99 at the end of the

simulation. Comparing the experimental with the numerical results two issues become evident:

Similar to other works (e.g. Mander [21]), the simulation was performed with an elasticity mod-

ulus smaller than 200GPa to cope with the experimental results that clearly show a relatively
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flexible response at first loading and in subsequent unloading and reloading branches. In ad-

dition, specimen 19 experienced a smooth transition between the elastic and the elastoplastic

branch at first loading, contrary to similar specimens tested in the same test campaign.

The following case concerns the tests carried out by Leslie [18] with high strength steel

(Grade 380) also from New Zealand and with a specimen that was subjected to 8 intense cycles

with plastic deformation. At the end of the numerical prediction, the parameter γ f reached the

value of 0.90 revealing that the fatigue sub-model is adding significant strength degradation into

the simulation. Switching off this sub-model by setting c f = 0 shows that the peak stress values

become overestimated, in particular at the end of the test. Moreover, Figure 12b shows some

asymmetries in the softened branches for subsequent tension and compression loading cycles,

which cannot be predicted by the RSteel model. The peak stresses achieved in each cycle are

well reproduced by the model.

The tests carried out by Aktan et al. [1] are considered in the following two examples. High

strength steel manufactured in USA is used and size #9 and #6 bars are chosen. In both cases the

results are reasonably well predicted by the model. However, the yield plateau is not captured

as a result of the simplifications introduced in the model for the aforementioned reasons. In

these two tests, the fatigue-related strength degradation is very significant as demonstrated by

retrieving γ f = 0.75 and γ f = 0.84 at the end of Test 5 and Test 8, respectively. On the other

hand, asymmetries in the response under tension and compression forces can be found in the

experimental data, which reduces the accuracy of the numerical prediction.

The last group of experiments used Grade 60 steel reinforcing bars from the USA and were

published by Ma et al. [19]. In these cases the fatigue is low (γ f > 0.95) and the RSteel was

able to predict the experimental results with good accuracy.

In these validation tests, the parameters adopted for the softened branch curvature ranged

between: R0 = 1.8−4.0; cR = 0.2−0.6; nR = 0.8−5.0. One can say from the experience obtained

using the model that the R0 parameter is typical about 2.5 and a reduction of cR = 30%− 40% is

expected to occur at failure. This reduction is more intense at the first cycles as proved by using

values greater than 1.0 for nR and normally about 4.0.

In what concerns the ultra-low-cycle fatigue parameters, these ranged in the validation tests
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between: c f = 0.30 − 0.40; n f = 0.38 − 0.75 and ε f was set to 24.5. As discussed before,

ε f represents the value of ε̃ac
sp at bar failure. This parameter was set to 24.5 as a result of the

processing made with the data obtained by Brown et al. [4] and illustrated in Figure 6. From the

experience obtained by authors, values between 20.0 to 25.0 seem adequate for this parameter.

Setting the strength reduction to c f = 30%−40% at bar failure represents a common situation and

values less than 1.00 are commonly adopted for n f , which implies that most of this degradation

occurs at the first cycles.

Taking into consideration the results presented, it can be stated that very good predictions for

the experimental results are obtained using the RSteel model. This demonstrates the flexibility

of the proposed model and the adjustment to the effective behaviour of the steel reinforcing bars.

Nevertheless, it is possible to observe minor differences in some cases for the stress at reversal

and for softened branch curvature. In addition, some asymmetries can be identified in tests

carried out with alternating tensile and compressive forces. This type of behaviour is not too

significant and cannot be simulated with the proposed model, or in fact, with the large majority

of the models available for steel reinforcing bars.

6. Conclusions

This paper presents a simplified and easy to implement constitutive model to simulate most of

the phenomena that characterize the steel reinforcement response under general loading cases.

Special attention is drawn to the ultra-low-cycle fatigue effect that occurs when the steel rein-

forcements experience large inelastic cyclic strains and may result into significant steel resis-

tance and stiffness degradation that may lead to premature collapse by fracture.

The so-called RSteel model is completely defined by 10 parameters and is characterized

by a bilinear response at first loading, which is followed by a softened branch defined by the

well-known Guiffrè-Menegotto-Pinto equation [11, 24], later improved by Filippou et al. [10].

A new proposal is presented for the yield surface evolution that allows the consideration of

both kinematic and isotropic cyclic hardening observed in the experiments. Moreover, a new

definition is presented for the R parameter evolution, which is associated with the curvature of

the softened branch. The RSteel model includes an innovative and simplified formulation for

15



considering the fatigue phenomenon for situations in which failure is achieved with less than 50

full cycles with plastic deformation (ultra-low-cycle). This sub-model was designed to be easily

implemented in a finite element formulation.

The comparison made with experimental results showed that the RSteel model can reproduce

the loading and unloading paths for multiple load-reload cycles with a very good accuracy.

In addition, it was possible to define the tangent stiffness matrix, which always introduces a

significant advantage with respect to the computational efficiency.

The main issues identified for future research are pursuing the model validation with addi-

tional experimental results, in particular for cases when failure is achieved with a larger number

of cycles, and assessing the model parameters sensitivity through parametric tests. Furthermore,

the introduction of steel bar buckling, of strain-rate effects and the possibility of simulating

asymmetric tension-compression cycles are also identified as pertinent future work.
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8. Appendix

Note: Tables 2, 3 and 4 are to be placed in the Appendix.
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Figure 1: Typical response of reinforcing steel bars on tension tests.
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(c) Tests by Aktan et al. [1], Test 5, #9 bar
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(e) Tests by Ma et al. [19], Specimen 3
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Figure 12: RSteel model - Comparison with experimental results.



Table 1: RSteel model parameters.

Parameter Unit Domain Definition
Es Pa [0,∞] elastic stiffness
σsy Pa [0,∞] yield stress
β0 - [0,∞] initial hardening factor
εsu m/m

[
σsy/Es,∞

]
strain at peak stress

R0 - [0,∞] initial value of R
cR - [0, 1] reduction factor of R
nR - [0,∞] exponent used to control the evolution of R
ε f - [0,∞] value of ε̃ac

sp at failure
c f - [0, 1] reduction factor of γ f

n f - [0,∞] exponent used to control the evolution of γ f



Table 2: Results of fatigue tests performed by Brown et al. [4]

Specimen φ (mm) εa (%) εap (%) Ncr
c N f

c
#21

19

±1.50 1.10 28.0 43.5
#22 ±1.75 1.35 15.5 30.5
#23 ±2.00 1.55 15.5 24.5
#26 ±2.25 1.80 12.5 22.0
#24 ±2.50 1.98 8.5 15.0
#25 ±3.00 2.30 4.5 11.0
#33

22

±1.25 0.94 43.5 77.0
#32 ±1.50 1.10 21.5 46.0
#28 ±1.75 1.35 16.5 30.5
#34 ±1.75 1.35 17.5 47.5
#27 ±2.00 1.55 11.5 23.0
#29 ±2.25 1.80 10.5 21.0
#30 ±2.50 1.98 10.5 19.0
#35 ±2.50 1.98 11.0 19.0
#31 ±2.75 2.29 7.5 11.0
#36 ±3.00 2.30 5.0 12.0
#43

25

±1.50 1.10 22.5 55.5
#46 ±1.75 1.35 10.5 39.0
#44 ±2.00 1.55 16.5 30.5
#47 ±2.25 1.80 7.5 22.0
#45 ±2.50 1.98 10.5 14.0



Table 3: Results of fatigue tests performed by Mander et al. [22, 26]

Specimen εa (%) εap (%) Nc Failure Criteria
R8 ±0.80 0.65 148.0
R4 ±1.00 0.83 49.0 normalized
R10 ±1.25 1.10 23.0 tensile stress
R21 ±1.34 1.17 25.0 starts dropping
R7 ±1.50 1.30 21.0
R11 ±1.75 1.60 13.0
R5 ±2.00 1.80 9.2 tension
R9 ±2.50 2.20 5.6 crack
R1 ±3.00 2.70 4.1 initialization



Table 4: Model parameters used for computing the stress-strain curves presented in Figure 12.

Parameter 12a 12b 12c 12d 12e 12f
Es (GPa) 180 210 210 190 200 200
σsy (MPa) 325 380 480 500 460 450
εsu (%) 18.0 12.0 14.0 8.0 12.0 12.0
β0 (%) 0.60 1.90 2.80 5.00 1.70 2.10

R0 4.00 2.50 2.50 1.80 2.50 2.80
cR 0.60 0.60 0.20 0.20 0.25 0.35
nR 0.80 0.80 4.00 3.00 4.00 5.00
ε f 24.50 24.50 24.50 24.50 24.50 24.50
c f 0.40 0.40 0.30 0.45 0.30 0.35
n f 0.60 0.60 0.40 0.38 0.75 0.75



Algorithm 1: RSteel model state determination.

Initialize: State variables: εsa = εs0 = σsa = σs0 = 0; β± = β0; R± = R0; γ f = 1.

For each new load increment ( j):

1. Update: Strain increment: ∆εs = εs − (εs) j−1.

2. Update: Maximum absolute strain: εmax = max
{
(εmax) j−1, εs)

}
.

3. Compute: β± using Equation (5).

4. If ∆εs(∆εs) j−1 < 0 ∧ εmax > εsy (def. increment reversal):
Update: εsa = (εs) j−1;
Update: σsa = (σs) j−1;
Compute: γ f using Equation (19).

5. If εsa = σsa = 0 (first loading – bilinear branch):
Compute: Φ± using Equation (6);
Compute: σt using Equation (1);

If σt − Φ+ > 0 :
Compute: εp = ε − Φ+/Es.

If σt − Φ− < 0 :
Compute: εp = ε − Φ−/Es.

Else (subsequent loading – softened branch):
If ∆εs ≥ 0, (± ← +); Else: (± ← −);
Compute: ε±s0 using Equation (10);
Compute: σ±s0 × γ f using Equation (11);
Compute: ε∗s using Equation (8a);
Compute: R using Equation (12);
Compute: σ∗s using Equation (7);
Compute: σs using Equation (8b);
Compute: εsp using Equation (2).

6. Update: ∆εsp = (∆εsp) j−1 +
∣∣∣εsp − (εsp) j−1

∣∣∣.
7. If σ j−1

{
Es(εs − εsp)

}
≤ 0 (load reversal):

Compute: εac
sp using Equation (14);

Compute: ε̃ac
sp using Equation (17);

Update: ∆εsp = 0.

8. If εmax ≥ εsu ∨ ε̃ac
sp > ε f (rupture):

Update: σs = 0.
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