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Abstract

This paper presents a new approach to perform incremental dynamic analyses
on reinforced concrete buildings using the so-calighrid discretizationstaking
advantage of parallelized computations and domain decomposition techniques to
enhance the capability and performance for the analysis of large-scale problems.

The concept of hybrid discretization consists in the combination f6éreint
modelling approaches for the three-dimensional structural elements. Where most
of the non-linear phenomena are expected to occur, refined meshes and more com-
plex constitutive relations are adopted. Elsewhere, simplified structural models are
considered.

Special attention is devoted to the definition of adequate techniques to treat the
transition zones betweenflirent structural models. Théheiency and accuracy
of alternative kinematic constraint techniques are studied and assessed.

The paper ends with two validation examples that test the accuracy and the
computational performance of the proposed methodology.
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Incremental Dynamic Analysis, Kinematic Constraints

1. Introduction

The main objective of this paper is to propose a combinedesfyato enhance
the computational performance of dynamic analyseseorforced concret¢RC)
buildings.

This strategy integrates the use of parallelization, asthpolution procedures
and the combination of fferent discretization techniques, which will be addressed
in this paper asybrid discretizationgHD).

To cope with this objective, the paper is organized as fdtowt first, the
formulation and some implementation issues related to énellplization and to
the domain decomposition method adopted are addressaswafds, the concept
of hybrid discretizationss discussed in detail, underlying their main advantages
and drawbacks. The following section is devoted to the ukeeimatic constraints
(KC) to enforce the transition betweenffdrent mesh types, as required for the
HD. Two validation examples close the paper. The first is deglic#o test the
accuracy of the proposed methodologyimeremental dynamic analys€tDA),
and the second, focuses on studying the useftéreint techniques to enforce the

KC and assessing their impact in the overall performance dfithalation.

2. Parallelization

The basic concept of substructuring applied to the finitenel® method is to
solve the original problem in a two-level format, using: iyemlucedor coarse
problem, commonly defined at the subdomadh Houndaries, which acts as an
interconnecting and load balancing mechanism, and itennal problem defined
at the subdomain-level with all the condensed and boundaskpawns associated

with each subdomain.



This procedure requires the implementation of iemain Decomposition
(DD) method to perform the analysis. In this work only fPiémal Substructuring
(P9 method [1, 2, 3, 4, 5] will be considered due to its simpjicihd applicability
to the problems addressed. The formulation can be establlisy considering the
stifftness-based definition of a static linear mechanical systdijested to exter-
nal loads(Q,), in which the structural domain is divided ini@ non-overlapping
subdomain€2® with interconnecting boundarié¢®s (see Figure 1).

The unknowns of this problem are the nodal displacementscima be re-
ordered by grouping first the interiolegrees-of-freedofDOF), gathered by sub-
domain §), and afterwards thBOF at the boundary. Adopting this procedure, the

following governing system would be obtained:

Ki 0 0 Ky q; Qéi
0 0 :
0 0 K K™ ne | ns |’ (1)
i iB g Qe
| Kg -+ Kg Kes || dg | | Qes |

where the sftness sub-matrices associated with the bounD&@¥ are defined by:

Kgi = A Kiin 2)

Kis = Ki, Ajes 3)
Ns

Kes = Z Aps Kip Apg: 4)
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where superscrips represents the subdomain and the subscripbsapnd B) repre-
sent the (internal, subdomain boundary and global bouhdzDF.
The matricesA are primal Boolean operators used to define mappings between

global and local operators. The symbol was chosen to be stensiwith the ter-



minology used for the analyses without substructuringabee these matrices can
be seen as assembler operators.

The system of equations presented in equation (1) cleadywslthe indepen-
dence of the blocki ?,

from elements belonging to one subdomain. Additionallg, shb-matrixK gg can

Kiz andK 3, as these sub-matrices have contributions only
be computed from the sum of the independent subdomain batimsK 7 using
equation (4).

Already at this stage, the computation and the assemblage gbverning sys-
tem could be morefiicient by taking advantage of parallelization. Neverthgles
the parallelization will be taken one-step further, usingalti-step approach to
solve the linear system. To achieve this goal, a static awat®n method will be
adopted to eliminate the interr2OF of each subdomain from the coarse problem.

Let’s start by simplifying the notation, using the symb8&landQ for the con-
densed sfiness matrix and for the condensed force vector, wisdrealso known
as theSchur Complementvhich can be computed by assembling the contribution

of each subdomain, using:

N
S=) A S A, )
s=1
Ns
Q= 7 @ (6)
s=1
where:
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The reduced governing system (9) can be solved for the glutahdary dis-

placements and the interlaDF displacements can be recovered using (10):

Sgs =Q, 9)
-1
af = (K$) " (QP-K5 ag). (10)
where:
Qts) = ﬂtS)B gs. (ll)

It should be emphasized that no approximation is introdunedolving the
system of equations (9) instead of (1), and consequendysdme results should be
recovered, apart from numerically-related accuracy ksBerthermore, it should
be noted that the size of the reduced system (9) is generaityh remaller than the
one without using substructuring (1). On the other hand, aspect that should
be taken into consideration is that the condensed oper@tpese potentially full
matrices and this may represent a significant overhead ioamgutations.

To enhance the computational performance, the structaaysis algorithm
should be able to take advantage of multi-processing uGiieamonly, part of the
computations are centralized on aoet or master processing unijMPU) and the
rest are performed in parallel, at teebdomain processing unigSPU).

This method starts by computing the subdomain contribatianthe global
Schur Complements. This computation is executed in patithe SPU using
expression (7).

To adapt the formulation to non-linear analyses, the tesss@ated with the
external force vectom equation (8) should be replaced by tigbalanced force

vector, defined by:



9=Qe— Qi (12)

whereQ; represents thinternal force vectordefined ahead in equation (38), re-
sulting in the following subdomain contribution to the cemrsystem right-hand
side (6):
-1
Q= -5+ K5 (KS) o (13)

Afterwards the reduced problem is assembled aMPé&J, using equations (5)
and (6), and the coarse governing system (9) is solved faylthmal boundarnfDOF
increments using a direct solver.

The last steps consist of sending the relevant bounD&f displacement in-
crements to th&PUusing equation (11) and computing the internal unknowns at

the SPU, through:

oqf = K§ (-9 - K 695). (14)

and at the end, it is necessary to update the displacemanhtiughg:

:q+

59°
a . (15)
6qy

3. Hybrid Discretization
One of the most significant drawbacks of using three-dinmeradimeshes to
perform dynamic analyses is related to the high number ohowks associated

with this type of discretization. To mitigate this problemdamprove the fliciency

of the simulations, the use of the so-callegbrid discretization(HD) is studied.



The term hybrid was chosen to indicate that the resultingincembines two dif-
ferent natures of discretization. Accordingly, a refinedshis used when the most
relevant stress concentrations are expected to occur,carsgguently, to develop
a significant non-linear response. In contrast, the zonksated to remain elas-
tic or with minor non-linear fects are modelled with a simplified discretization.
The typical choice for the simplified mesh of common fraR€ buildings are
Euler-Bernoulli or Timoshenko beams. Solid elements (hegea) are used for
the refined part of the mesh and these were combined withdrussam elements
for simulating the steel reinforcements.

In general, thedD proposed in this work is expected to introduce the following

advantages:

1. Reduce the number &OF and therefore make the analysis moficeent
and feasible, without a significant impact on the accuracyhefnumeric
simulation;

2. Promote the use offiierent modelling strategies within a single simulation;

3. Create a convenient anffieient partition between the subdomains that can

be used in the substructured analysis (see Figure 2-a).

This methodology requires making an assumption regardimgye/most of the
non-linear phenomena will occur. This is not consideredyaitant problem due
to two reasons. First, the zones with stress concentratiande reasonably well
predicted folRC structures, by knowing the characteristics and the intgfithe
loads acting on the structure. Secondly, the mesh can alweysadjusted and the
analysis rerun if the structural behaviour iffeient from what was predicted.

Figure 2-a shows what would be a feasiblp for the main structural elements
of a commonRC structure subjected to predominant horizontal loadingthia

case, the refined mesh would be concentrated at the jointatathe extremities
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of the beams and columns. The interior spans of these membe=sipposed to
develop, at most, only minor non-lineaffects, which is a reasonable hypothesis
when an earthquake loading is considered.

High permanent loads or earthquakes with intense vertaadlarations could
change these assumptions. Normally, the first case wouldreslilt in stabilized
cracking and stress redistribution that would have a mimgract on the global
response of the structure. Moreover, considering thateénmanent loadingféects
are present before the earthquake loading, thgcecan be simulated by creating
a segment of the beams with reducedfisiss. Regarding the second case, it is
always possible to use non-linear beam elements or extenetimed mesh to the
interior of the beam span.

In order to generate the mesh, it is necessary to estimatizief the refined
mesh segments. The basic parameter to be defined is the tdrigéhrefined mesh
segments near the edges of the elementsir( Figure 2-a). This parameter is
strongly related to the well-knowplastic hinge lengthhat is discussed in several
works,e.g.[6, 7, 8, 9]. A first estimation for this parameter can be masieiming

that it depends only on the cross-section dimensions:

Lh = Ah max(Wye, Wyz) , with 2, =[2.0,3.0], (16)

wherew,, andwys represent the transversal widths in the local direckpandxs,
respectively.

Linear kinematic constraints were used to connect the bealsaid elements,
although other possibilities were considered, lik@nsition elementshat are for-
mulated to handle fierent types oDOF resulting from non-compatible elements
(see for example [10, 11, 12, 13)).

The transition elements present some disadvantages wimpaced to the



kinematic constraints, mainly because they introducetmaadil complexities to
the model, related to the numerical behaviour of these al&snelhe discretiza-
tion would also present additionalfficulties and the usage of transition elements
increases the number of elements in the mesh. On the othdy kiaematic con-
straints present a predictable structural behaviour apiesent a minor increase
in the complexity of the model. Furthermore, this approacksdnot increase
the number of nodes or elements. Nevertheless, there wainb@crease in un-
knowns if the constraints are enforced using Lagrange blidts. At the end, the
choice tended clearly towards using kinematic constraimitsch will be discussed

in more detail in the following section.

The HD increases the possibilities regarding the use @edint modelling
strategies within a single simulation. To illustrate tiigyure 3 presents a schematic
representation of the mesh used to model a four storey hgildubjected to an
earthquake loading. In this case, the lower storeys weralated using refined
meshes and more complex constitutive models, becausesthvisere most of the
non-linear phenomena are expected to occur. On the othdr siamplified meshes
and models were adopted for the upper storeys, where treseus expected to
have a nearly elastic response.

Fibre models implemented in beam-column elements couldskee for the
simplified mesh when some non-linear response may stillldpvat the upper
storeys. Otherwise, using linear constitutive relatiorsuld be the most ade-
guate solution. Global response models with concentratastigity could also
be considered. However, this formulation presents soneed@stages for three-
dimensional models, in particular for columns subjectethitxial bending, due
to the increased complexity associated with the definitibthe global response

rules.



4. Kinematic Constraints

Kinematic constraint$KC) can be used to prescribe a specific behaviour on the
nodal displacements. Within the scope of this work,Kl@are linear because the
analyses are also geometrically linear. In addition, théharaatical formulation
for the KC presented is written under the assumption of small dispiacgs. A
typical use for the kinematic constraints is to impose ai§ipestructural behaviour
such as connecting fiierent parts of the structure or enforcing certain types of
rigid-body behaviour.

A set of kinematic constraints can be expressed in the miainmat:

whereCk is thekinematic constraint matrixalso known agonnectivity matrix
which contains only constant values atig is a constant vector. The mati
has a number of rows equal to the number of kinematic constegjuations rf)

and a number of columns equal to the total numbdDOF.

4.1. Beam2Solid constraint

Within the scope of thédD proposed in this workKC are used to impose
the connection between beam and solid elements, whichrirésend 3DOF per
node for the general three-dimensional case, respeciisetyFigure 2-b). These
specific constraints are call&kam2Solidn this paper, which consist of enforcing
part of the equation of the well-known diaphragm and platestaints. Only the
equations associated with the translatidn@lF of the solid elements are enforced
(see Figure 4), hence reducing the number of constraineatieqa to half.

Considering the case of the constraint axis located aloaglibbal direction

X1, the equations adopted by tBeam2Solicconstraint are:
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a3 = ay' + X365 — %264, (18)
0% =ay — %36}, (19)

g5 = ay + %6, (20)

whereqiS (ql'\") represents the displacement of the slave (master) nodg #ien
global coordinate and¢f (6M) represents the rotation about the axisof the
slave (master) node. For other constraint axes, the eqgatian be defined using
a direct cycle permutation of the direction indices.

TheBeam2Solictconstraint will be implemented by thdaster-Slave Elimina-
tion (MSE) method [14] or usind.agrange Multipliers(LM) [15, 14], which will

be discussed in the following paragraphs.

4.2. Master-slave Elimination

The Master-Slave EliminatiodMSE) method, also known aransformation
Equationsmethod, consists in the elimination of a group@®F (slave DOF)
using the equations that relate them to a set of spB¢ (masteDOF). This can
be seen as a static condensation. However, in this case @eitom kinematic
relations are used instead of the relations already indlirdthe governing system.

If the DOF are ordered leaving the slad@OF at the end, it is possible to

rewrite equation (17) as:

[ CK,m CK,S ]
ds

where the subscript represents the master (retaind2PF and the subscrips

fim ‘ = di, (21)
represents the slave (condensBd)F.
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After some simple algebraic manipulations on equation, (219 slaveDOF

displacements can be defined in terms of the m&@¥F displacements, using:

0s = Ck,sm0m + dks, (22)

with:
CK,sm = _CE}SCK,m, (23)
di.s = Csdk. (24)

It is possible to rewrite equation (22) as:

Om
Us

whereTk can be seen as a transformation matrix defined by:

=Tk Qm+
dK,s

|
: (25)

Tk = , (26)

CK,sm
wherel represents the identity matrix with size equal to the nurobarasteiDOF.

The governing system of a mechanical linear system suldjéotstatic forces,
where the mastdDOF are ordered first and the slaiZ@OF at last, can be written

as:

Kmm Kms Um B Qem 27)
Ksm Kss Os Qes

after introducing equation (25) and pre-multiplying 'b}(, it is possible to write:

0 Qem

€,S

t
:TK

‘ . (28)



then the governing system of equations can be rewritten as:

Kgm = Q% - d°, (29)

where:

K® =T KTk = Kmm+ Ck smKsm+ KmsCk.sm+ Ck smKssCkism  (30)

QC = TtK Qe =Qem+ CtK,5er,s, (31)

d =T K = (Kms+ CtK’smKss)dK,& (32)

dk.s
After solving (29) for the master displacements, the sla@# displacements

can be computed from equation (22). This method presentsoventage of elim-

inating the constraineDOF from the governing system, leading to a smaller num-

ber of equations to be solved. Nevertheless, this benefibedargely outweighed

by the necessary manipulations and by the need of solvingdt#ional system

of equations to recovers. The major disadvantage of this method consists in the

required rearrangement of the governing system.

4.3. Lagrange Multipliers

This method introduces new variables callefyrange Multipliers(LM) to the

system of equations. THeM can be grouped into the following vector:

wheren, is the number of constraint equations.

This vector can be used to impose the constraint equatiahau€ing:

A'(Ckg —dk) =0. (34)
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This equation can be seen as the energy necessary to eriercertstraints

and can be added to the total potential energy functionddeofrtechanical system:

n(q,A)=fg:§<q) 40 - Qulq+ A (Cx g - di). (35)

whereg ande represent the stress and strain tensors.
Introducing the relatiorfe = B q) and imposing the stationary condition, it is

possible to obtain the following groups of equations:

5_1_[
aq
— =Ckq-dk =0, (37)

=Q - Qe+Cx =0, (36)

where thdnternal force vectois given by:

Q- [Bow (38)
Grouping these equations into an augmented governingmsyssults in:
K Ct
<9<l 9 (39)
Cqk O A dx

where it can be seen thé’§< acts like an equilibrium operator, and therefore, the

nodal forceqQ.) that impose the constraints, can be computed from:

Qc = CyA. (40)

As highlighted by Liuet al. [15], there are two main disadvantages associated
with the use of this method: the number of equations inceeasd the expanded
stiffness matrix becomes indefinite due to the zeros in the diagonas. The latter

reduces thefficiency in solving the system of equations and some solvgrore
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positive definiteness. On the other hand, the main advargagf@s method is
related to the fact that it is not necessary to rearrange peitiorm any additional
operation to the system of equations. This last feature oampensate in many

cases for the fact of having a larger number of equationsite $6].

4.4, Implementation

Within the framework of this workiKC were used for three fierent purposes:

1. for prescribing nodal displacements;
2. for implementing théiD technique;

3. for enforcing a specific structural behaviour.

The LM method was used for prescribing nodal displacemergsbase dis-
placements to simulate earthquakes, and for enforcingreimnis that are defined
within the scope of more than one subdomairg. rigid floor diaphragms. This
technique was implemented in the reduced problem and eglsimtan augmented
governing system with a new set of unknowns, the Lagrangdipliels. Within
the scope of this paper, this technique will be referred @Glabal Kinematic Con-
straints(GKC).

Alternatively, theMSE method was used when no interaction with the other
subdomains is necessary. This corresponds to the genemalofanforcing the
Beam2Solictonstraint. This methodology reduces the number of unksawthe
governing system by associating th®F to be condensed with the ones retained
in the model using mathematical relations. To avoid beingfuzed with theDOF
split used in thePS method, from this point on the condensed (retaine@F
will be referred to as slave (master) and this enforcing niepie will be called
Local Kinematic Constraint§LKC). Figure 5 presents an example of a possible

distribution of GKC andLKC.
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4.4.1. Local Kinematic Constraints

TheLKC are imposed at the subdomain level and the followix@F ordering
is adopted:

U
9°=1| qs |, (41)
Oy
where the subscripts and s refer to master (retained) and slave (condensed) in-
ternal subdomaiDOF andb refers to the subdomain boundd»DF. As a conse-

guence, equation (25) should be rewritten as:

I 0
S |=Tp A +| ds (42)
Os | = 'L qs Ls |’
o ° 0
where the new kinematic transformation matrix (26) is defibg:
5 m 0
TE = CE,sm Cﬁ,sb ’ (43)
0 155
in which Cf’sm andCisb are the extension to the subdomain scope and to the pro-

posedDOF reordering of the matriKk smdefined in expression (23). The subma-
triceslymandlp, are identity matrices of size equal to the number of master an
boundary subdomaiBDOF, respectively. The remaining entries are zero matrices
defined with consistent sizes.

The usage that will be given to the local constraints impties df,s =0, so
that the last term in equation (42) becomes irrelevant afidesomitted from now
on. It should be emphasized that the subdomain matfi¢ese highly sparse and

very prone to be stored in matrix sparse format.
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Under these assumptions, the subdomain structural operedn be defined

as:

K& = TKSTE, (44)
Cos =T CTS, (45)
MES = TP'MSTS, (46)

and the dynamicfective stifness associated with theMethod time integration

scheme [17, 18] is given by:

. 1
RCS = (1+a)[KCS + 2G| + ——_MCs, (47)
BAt BAE

After computing the subdomain boundd@¥®F displacements in substructured

analyses, the rest of the unknowns can be computed using@y(42).

4.4.2. Global Kinematic Constraints
Using GKC the incremental coarse problem used for substructuredtsted

analysis (9) becomes augmented and can be written as follows

-Q
sdg

S CE;
Cec O

o[}
A

(48)

The matrixCg is the global constraint matrix of sizg x ng, whereng repre-
sents the number of global kinematic constraints mgdepresents the number of
boundaryDOF in the reduced problem. In addition,is a vector of sizeny that
holds the Lagrange Multipliers.

In this case, the right-hand side vecth cannot be eliminated as before, be-
cause this vector will be used to enforce absolute valueheruhknowns €.g.

prescribed displacements).
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The operator£ andQ are respectively the dynamic versions of the Schur Com-
plement and of the unbalanced forces vector defined for thesegroblem.
Using local kinematic constraints, the subdomain contidims to these opera-

tors are defined as follows:

80 = RS- RE(RE) R (49)
A~ R ~ ~ -1,
QS = g5+ KE3(KT9) 6, (50)

where the superscrifit indicates that these operators are defined after condensing
the internal slavd®OF, as in equation (44).

Expressions similar to (5) and (6) can be used for assemtiimgontribution
of all subdomains, because these are defined for the globallaoyDOF and do

not change by eliminating the slave condenB&aF.

5. Example 1: Elastic cantilever column

The purpose of this example is to test the algorithniausing substructuring
and the HD technique proposed in this paper. To cope withabjsctive, the
elastic cantilever column, presented in Figure 6, is chofbe material response is
considered elastic for simplicity and four meshes are abpthe meshes include
8-noded hexahedror{$18) andEuler-Bernoulli Beam¢EBB). Table 1 summarizes
the main characteristics of the meshes.

GKC were adopted to enforce tliBeam2Solicconstraints and thBSmethod
was used as theD technique.

The column was subjected to a prescribed displacement &tae (see Fig-
ure 6). The time history presented in Figure 7-a was corsitlas a displacement
record (in centimetres) for the prescribed displacemethetbottom of the col-

umn. In this case, the accelerations associated with thedetpdisplacement may
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be computed by double fierentiation of the displacement record, resulting in an
acceleration record witPGA = 1 m/s?. The elastic response spectrum is dis-
played in Figure 7-b, revealing that this record was geedr&t match the elastic
response spectrum of Eurocode 8 [19] for ground type A and 68amping.

The mass was concentrated on the top surface of the columia &mdped
mass matrix was considered. The Newmark’s [2@¢rage acceleration method
(y = 0.50;v = 0.25) was used as the time integration algorithm and proportional
damping was considered by imposing 5% of damping at 1 Hz andzleading
toa = 5.7119x 1071 andp = 1.4468x 1072 [14].

The results are compared with the solution obtained withfithiee element
software ADINA [21] adopting the Mesh #1 discretization,ighis considered as
the reference for the tests.

The IDA resulted in the displacements at node A (X direction) priesem
Figure 8 for the analyses #1 and #2, and in Figure 9 for theyaeal#3 and #4,
together with the results obtained by the reference arsalyBhese results show
that the analyses #1 and #2 recovered the reference solasom result of using
the same mesh, element type and finite element formulationth® other hand,
for the analyses #3 and #4 the response shows snfidrelices in the amplitude
and a minor time fiset. This results from havingftierent structural responses that
change the amplification and the main vibration frequency.

In conclusion, the dierences in the response of the meshes with and without
hybrid discretizatiorare small, expected and related to thedent modeling tech-
niques adopted in the simulations. This demonstrates higtrioposed technique

is a valid and feasible way to reduce the problem size ardedfileve good results.
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6. Example 2. Elastic frame

The purpose of this example is to test the accuracy dinciency of the dif-
ferent methods used to enforce the kinematic constraigtsned for theHD tech-
nique. BothGKC andLKC are tested in this example.

The problem chosen is the single-bay frame 5.0 m wide and 3@mrep-
resented in Figure 10. All materials are considered to bealirelastic and two
types of meshes are used to simulate the structure. Meshst2reated by imple-
menting the partition associated with expression (16)r&eft, = 2.5. The overall
layout of the structure is symmetric although this propéstgot used to simplify
the analyses. The considered loading consists of a distdrertical load in Mesh
#1 and a concentrated load in Mesh #2.

Once again, the results are compared with those obtained tis software
ADINA [21] adopting the same discretization adopted in Mé&&h which is con-
sidered as the reference in this example.

Three numbers of subdomains are considered in the analysbsth meshes
(see Table 2). When only one subdomain is considered, tHgsemavas executed
with the sequential and the parallel version of the coderdeioto assess the par-
allelization overhead (see Table 3). Moreover, when twalsuoiains are adopted
the subdomain boundary was positioned in the symmetry brisce resulting in
uniform element an@®OF divisions, apart from Mesh #1 where the elements pass-
ing through the symmetry axis were included in subdomairF#tthermore, when
four subdomains are adopted the division was made by sempegtch column and
respective foundation, and the interior part of the beam iwb nearly identical
halves (partitions P1, P2, P3 and P4 represented in FigQreTh@ same geomet-
ric division was used for Mesh #2 (partitions P5, P6, P7 and H®&is resulted

in a non-uniformDOF distribution, with both column-beam subdomains having
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around 23 of the total number of interidDOF and the remaining /B divided in
equal shares by both column bases.

The characteristics of the analyses and of the kinematistmints imple-
mented are also presented in Table 3. This data shows that mbee than one
subdomain is considered, tRSmethod is adopted and that the analyses #5 to #8
were made using 756KC and the analyses #9 to #12 with 76KC.

Table 3 also presents the size of the governing system tolbedsoFor the
analyses with only one subdomain, 8IOF are considered as interior and are
present in the governing system. WHeKC are used, the 756 constraint equations
are added to the system, becauselitlemethod is used. Moreover, wheKC are
implemented, th®OF associated with the 756 constraint equations are elindnate
from the governing system.

For the case of more than one subdomain, the governing systém solved
is the reduced problem defined by the inter-subdonddt. WhenGKC are im-
plemented, the reduced problem is also augmented with thatieqs associated
with the constraints. On the other hand, wihé4C are used the size of the reduced
problem does not change because the constraints are afiplig internalDOF

of each subdomain, which is an importanffelience between these two methods.

6.1. Accuracy of the results

Table 4 presents the results for the vertical displacemepbiat A and for
the work performed by the discrete external forces, whiclthia case is equal
to the symmetric of the elastic strain energy. The resultsvstinat for Mesh #1
the solution matches the reference data, which is expeaeauise the mesh, the
element types and the global finite element formulationgteeame.

Regarding the analyses with Mesh #2, two important obsenatmust be

made concerning the data presented. At first, the samegasgeit obtained for
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all domain partitions and methods used to enforce the kitieroanstraints. Sec-
ondly, the results are very similar to the analyses withaingHD (e < 1.20%),
both in terms of the displacements and of the work performedxbernal forces.
This result shows that the accuracy degradation in the ctatipn of the global
structural behaviour using thHeD technique is small when compared to the case
where the structure is modelled using only solid elements.

From these results, it is possible to confirm that the pragpaaethodology
does not introduces any significant loss of accuracy in tealte Additionally,
both methodologies for imposing the kinematic constra@mesequivalent in terms

of the overall results.

6.2. Performance analysis

This analysis is made for assessing thency of the KC-enforcing methods,
when combined with the parallelization procedure.

All computations were executed on a 8 GB RAM multi-core cotep{model
Intel Core i7 720QN) with 4 processing unitgPU), which runs at a variable clock
rate between 1.6 and 2.8 GHz, due to an automatic dynamiwhesemplemented
overclock procedure. These specifications lead to a theakpeak speed between
25.6 and 44.8 GFIlgp, considering 4 instructions per cycle. Furthermore, time-c
putations were made using a windows implementation of thealdaoftware [22]
and using specific toolboxes for the parallelization [23, 24

The following measures were taken to mitigate some unceigai associated
with the computational performance. All non-critical pesses and services run-
ning in the operating system were terminated and all presasdated to the com-
putation (Matlab’s client session, Matlab workers, andspendandmpiexeqro-
cesses) were executed with high priority levels. In addjtthe computing times of

all analyses wereffected by a factoy, in order to take into account the variation of
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the CPU'’s clock rate. For the processor installed in the agerpthe adopted clock
rate distribution wa$2.80; 220; 160; 160} GHz for {1; 2; 3; 4 Matlab workers or
active cores, leading to the correction fact¢t900;Q786;Q571;0571}. This
procedure was validated by estimating the number of flogioigt operations per
second of two dferent computations using parallel computations. Theigiig

expression is used:

F*=yFsn, (51)

wheren,, is the number of Matlab workers artg}, is the number of floating point
operations per second for the sequential code run in theablafient session.
The computations used were matrix-by-matrix multiplicatiand linear system
solving using Matlab’s \" operator and in both cases the results showed that the
relative errors are always below 8% and most of the time beéty therefore
demonstrating that the computational uncertainties ateaieed at a satisfactory
level (see Mendes [25] for more details).

The computing times of five incremental steps from D& were measured
and the average values are used to assess the performaheswiittural analysis.
These average computing times ranged between 97.060 &feetjuential version
of the code and using mesh #1, and 11.581 s when 4 subdomasis #2 and.KC
are considered.

A deeper analysis regarding the computatiortiency can be made by intro-
ducing the following parameters. Tlkkemputational performance ga{CPG) for
the homogeneous system used in the computations is defiribd estio between
the sequential code computing time and the parallelizesiaeiof the code using
np processing units. In addition, theghiciencyof a homogeneous systefk) is

defined as the computational performance gain per proceSseiICPG/ny. In all
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cases, the number of processing units considered in eaehrashes the number
of subdomainsr{, = ns). The termspeed-ups avoided because the computations
in the sequential and in the parallelized versions of thee@é diferent.

Let us start by assessing thfeet of the parallelization for each mesh and
KC-enforcing method. These results are presented nurtigricaTable 5 and
graphically in Figure 11. The analyses with one subdomainficoed a small
computing time increase for the parallelized version ofdbee due to the implicit
overhead. Moreover, for the analysis with two and four suliaos, the computing
time decreased significantly for Mesh #1 and Mesh #2 combaigd_KC and this
decrease was less significant for Mesh #2 &IC. This data clearly shows that
for two subdomains using Mesh #1 and Mesh #2 with LGK, the CRIGes show
linear scalability with the parallelization level and ev&iper-linear scalability,e.
efficiency above 100%, due to thefldirent solving technique associated with the
PSmethod.

The CPG values are significantly smaller when Mesh #2 is usdd ®KC.
This response can be associated with two main aspects. Atvinen theGKC
method is implemented in the reduced problem, which is sobtetheMPU, it
does not benefit from the parallelization, contrary tolthe&, which are enforced
at the subdomain leveBPU), and hence, computed in parallel. Secondly, for this
case in particular, enforcing theKC results in nearly doubling the size of the
reduced problem, which also contributes to worse resultsrins of the CPG and
efficiency values.

For the analyses with four subdomains, the CPG dhdiency values are re-
duced bellow the linear scalability level. This behaviaiexpected due to the load
unbalancing associated with the mesh partition with fobidsunains, as presented
in Table 2 and discussed before. This aspect results in #isan loss of #i-

ciency because under the data parallelism approach, thiewigightedPU must
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wait idle until the most loaded units finish their computatio

Another valuable source of information can be extractethftoe CPG values
grouped for the dferent meshes and KC-enforcing methods. These results are nu
merically presented in Table 6 and graphically in Figure T2 curves associated
with one subdomain show higher CPG values for Mesh #2 thaifsh #1, as
a result of the decrease in the numbeD@F associated with thelD technique.
Moreover, comparing the result usi®KC andLKC it is possible to observe that
similar results were obtained. This is expected becausar®isubdomain it is not
possible to gain from parallelization for thd&(C and the supplementary equations
added to the governing system usi@¢C, represent only a minor increase in the
size, with almost insignificantfiect on the overall performance. Furthermore, the
curves associated with two and four subdomains show CPGwadtiabout 2.0
for Mesh #2 usingGKC when compared to Mesh #1. These gainsfiicency
are mainly associated with the decrease in the numbBQdF using theHD tech-
nique. The CPG values increase even further when wdftigydue to the additional
parallelization associated with this technique.

The next step in the analysis consists in combining ffeceof using the paral-
lelization, thePSmethod and thaybrid discretizatiortechnique, which led to the
results presented in Table 7 and in Figure 13. These resafts mormalized by the
analysis made with the sequential version of the code, deriag only one subdo-
main and using Mesh #1. This data shows a combined CPG vatwed® 4 and
6, when two or four subdomains are used together witlGKE. In addition, the
efficiency gains are even more significant whe€C are adopted, reaching values
between 9 and 12, which represent very significant and eagmg performance
gains.

At this point, it should be stressed that even better perdoica gains could

have been achieved if the load balancing had been more omftarMesh #2 with
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four subdomains. Moreover, better results may also be aglesimed using higher
level of parallelization and by adjusting the number of subdin interiorDOF
to optimal valuesg.g. to around 10000-2000D0F, rather than the 2000-5000
considered in this example using four subdomains.

For the interpretation of these results, it is convenienéxtend the perfor-
mance analysis to theftierent code segments of typical finite element algorithms.
The incremental procedure was divided into the followingrfeections: i)Stif-
ness Matrix ii) Corrector, iii) Unbalanced Forcesand iv) Other. The Stifness
Matrix segment includes the computation of the elemefinsis matrices and the
assemblage of the global or subdomaiiffiséiss matrices. Th€orrector segment
includes the procedure used to obtain the iterative coorecif the discrete dis-
placements in order to reduce the unbalanced forces. MergetheUnbalanced
Forcespart includes the prior computations for the element’sirs¢;astate deter-
mination, stresses, and finally, the global or subdomagriad forces. Th®©ther
section includes the time step initialization, the comparteof the applied external
forces, retrieving and saving variables, and the auxil@wyputations associated
with the time step ending.

Figure 14 presents the percentage of computing time speeadm code seg-
ment for the diferent problem sizes considered. The data presented lec to th
following conclusions. Th@®ther segment reduces its percentage for larger prob-
lem sizes (Mesh #1) and tends to increase with paralleizatiThis is expected
as the computations included in this section are much lesstse to the problem
size and for the parallel version of the code results in &lakgrheadd.g. retriev-
ing the unknowns from the Matlab workers for ending the titegpk Additionally,
in this segment there are several tasks that are executbéd Madtlab client ses-
sion, therefore, without the possibility to scale with thenber of subdomaing(g.

storing the unknowns on hard disk and ending the time step).
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It is also possible to observe that thimbalanced Forcesegment maintains
roughly its relative weight. This is related to the fact thaist of the computations
associated with this segment are performed at the elemesitdad with good
conditions for scalability.

In addition, theCorrector segment tends to increase its relative weight for the
analyses with substructuring and tB8fhess Matrixsegment presents the inverse
behaviour. This is a fundamental aspect for the algorithmiop@ance and de-
serves an in-depth analysis. The first issue to be noted ifdhahe analyses
with parallelization the corrector phase is completeeadent and more complex.
For the analyses performed with only one subdomain, theectmr segment cor-
responds basically to the solution of the linearized systéraquations using a
direct method. On the other hand, the use of B&method requires the previ-
ous computation of the structural operators, such as tfiaess matrices and the
Schur complements, which are first assembled at the subddmail (7,8) and
only in the corrector segment are joined together for comguhe reduced prob-
lem (5,6). Therefore, it is possible to conclude that fortirdbmain computations
there is computational load transference from &tigness Matrixsegment to the
corrector phase and that the computing times are not justtemnoé parallelization
efficiency, but result from using fiierent solving schemes. Regarding this issue,
the most relevant fact in Figure 14 is that thiteet is considerably less significant
for the analyses associated with Mesh #2 considering twdandubdomains and
usingLKC.

The reasons for this behaviour can be associated with two aspects: At
first, the size of the reduced problem for the analyses Wi is extremely small
(e.g. 6 or 18 DOF, see Table 3); Secondly, the enforcement of the KC is made
in the Corrector segment, but for the caseL&{C, it is made in the scope of the

subdomain, which has the possibility of gainirfi@ency from the parallelization.
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Figure 15 presents the stress fietd, plotted on the deformed mesh for the
analysis with Mesh #2, four subdomains and udigC. In this figure is possible

to confirm that the expected deformed shape and stressdisin is retrieved.

7. Conclusions

In this paper, the computational performance was improyetaking advan-
tage of concurrent computations (parallelization), dontiicomposition techniques
and the so-callefiybrid discretization

The use of concurrent computations was implemented in tlig falement
code developed and makes it possible to take advantage afatheparallelism
associated with the finite element method and partitionbd@mainsge.g. for the
element’s state determination and for the computation efsthuctural operators.
The adopted domain decomposition method (Primal Substing), was also used
to enhance the gains from using concurrent computationgdyyteng the structural
analysis algorithm.

Hybrid discretizationccombine diferent types of meshes and can significantly
reduce the size of the problem to be analysed. To illustrage Example 2 reveals
a reduction of the total number of unknowns of about 48% ameh# possible to
expose CPG values of 3.5 using sequential computations.angsihg concurrent
computations.

TheHD proposed also presents the following two additional besigfitreates
a natural and ficient partition between the subdomains that can be usecein th
substructured analysis and it increases the modellingofléyiby promoting the
use of diferent element types inftierent parts of the structure.

It was necessary to testffirent methods to enforce kinematic constraints as-
sociated with theHD. This research concluded that the best technique to enforce

the Beam2Solikinematic constraint is to use a subdomain-based approauabk-b
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ing the Master-Slave Elimination method, knownlLaxal Kinematic Constraints
(LKC) in the scope of this work. Using this technique, the modaltoanefit from

the parallelization and scale with the number of procesdaraddition, when the
objective is to enforce inter-subdomain behaviour, thenlibst solution is to use
Global Kinematic Constraint@GKC), enforced by Lagrange Multipliers and using
additionalLKC to reduce the number of unknowns added to the coarse proljlem b
creating local master and slave nodes. Lagrange Multgpliare also used to pre-
scribe displacements on the structure, and as beforegttgineduce the number
of unknowns added to the reduced problem using additibKél.

Furthermore, when combining the improvements associaiéd aencurrent
computations with the ones resulting from substructurgghhiques and with the
ones resulting from thélD, it was possible to reveal CPG values of up to 11.7
using only four processing units, even though for that cheentesh partition led
to some load unbalance. These results exceeded the ixjtiat®&tions and were
considered very promising and extremely encouraging.

The main future development for this work is to implement éest the pro-
posed technique in a mordieient computational environmerg.(. cluster), with
larger problem-sizes and higher parallelization levetsaddition, further testing
is required to assess the accuracy and performance of thegao methodology

for solving non-linear problems.
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Figure 2: Schematic representation of tydrid discretizatiorapproach.
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Figure 7: Example 1 - Earthquake record.
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Figure 12: Example 2 - CPG values foffgrent mesh types and KC-enforcing methods.
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Figure 13: Example 2 - CPG values when combining all perfoiceaenhancing techniques.
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Tablel

Table 1: Example 1 - Characteristics of the meshes and ofrihlyses.

Analysis | Mesh,ng Elements DD Met., ng K. Constraints
#1 #1, 540 80 (H8) -1 -
#2 #2,540 80 (H8) PS 4 -
#3 #3,315 | 40 H8), 2 (EBB) -1 Beam2Solid GKC)
#4 #4,315 | 40 H8), 2 (EBB) PS 4 Beam2Solid GKC)
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Table2

Table 2: Example 2 - Characteristics of the discretizations

Analysis | Mesh,ngy | Subdomainsrs) | Boundaryng Interior ng
#01 #1, 29388| P1+P2+P3+P4 (1) - 29338
#02 #1, 29388| P1+P2+P3+P4 (1) - 29338
#03 #1,29388| P1+P2; P3-P4 (2) 162 14694; 14532 (50%; 50%)
#04 #1,29388| P1; P2; P3; P4 (4) 486 6918; 7614; 7452; 6918 (24%; 26%; 26%; 24
#05 #2,15294| P5+P6+P7+P8 (1) - 15294
#06 #2,15294| P5+P6+P7+P8 (1) - 15294
#07 #2,15294| P5+P6; PAP8 (2) 798 7650; 7650 (50%; 50%)
#08 #2,15294| P5; P6; P7; P8 (4) 810 1896; 5346; 5346; 1896 (13%; 37%; 37%; 13
#09 #2,15294| P5+P6+P7+P8 (1) - 15294
#10 #2,15294| P5+P6+P7+P8 (1) - 15294
#11 #2,15294| P5+P6; PAP8 (2) 6 7644; 7644 (50%; 50%)
#12 #2,15294| P5; P6; P7; P8 (4) 18 2010; 5628; 5628; 2010 (13%; 37%; 37%; 13
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Table3

Table 3: Example 2 - Characteristics of the analyses.

Analysis | DD Met. (ng) | Algorithm | K. Constraintsfx) | Reduced Problemy
#01 - (1) Sequential - 29338
#02 PS(1) Parallel - 29338
#03 PS(2) Parallel - 162
#04 PS(4) Parallel - 486
#05 -(1) Sequentiall GKC-LM (756) 15294+ 756=16050
#06 PS(1) Parallel GKC-LM (756) 15294+ 756=16050
#07 PS(2) Parallel GKC-LM (756) 798+756=1554
#08 PS(4) Parallel GKC-LM (756) 810+756=1566
#09 - (D) Sequentiall LKC-MSE(756) 15294-756:14538
#10 PS(1) Parallel LKC-MSE(756) 15294-756:14538
#11 PS(2) Parallel LKC-MSE(756) 6
#12 PS(4) Parallel LKC-MSE(756) 18
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Table4d

Table 4: Example 2 - Selected results from the analyses.

Analysis 67 (m), & W, = -U® (kN.m), &

Reference -4,20086e-3, - 2.10112e-1, -
#01 to #04| -4.20086e-3, 0.00% 2.10112e-1, 0.00%
#05 to #12| -4.15165e-3, -1.17% 2.07583e-1, -1.20%
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Table5

Table 5: Example 2 - CPG andfieiency values for dferent parallelization levels.

Analysis Parallel,ng = 1 | Parallel,ng = 2 | Parallel,ng = 4
Mesh #1 0.97 (97.5%) | 2.18 (108.9%)| 3.26 (81.6%)
Mesh #2GKC | 0.96 (95.5%) | 1.31 (65.5%) | 1.77 (44.1%)
Mesh #2LKC | 0.97 (97.2%) | 2.52(126.2%)| 3.34 (83.5%)
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Table6

Table 6: Example 2 - CPG values foffigirent mesh types and KC-enforcing methods.

Analysis Mesh #1| Mesh #2GKC | Mesh #2LKC
Sequentialpg = 1 1.00 3.50 3.51
Parallel,ng =1 1.00 3.43 3.51
Parallel,ng = 2 1.00 2.10 4.07
Parallel,ng = 4 1.00 1.89 3.60
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Table7

Table 7: Example 2 - CPG values when combining all perforraaamthancing techniques.

Analysis Mesh #1| Mesh #2GKC | Mesh #2LKC
Sequentialns = 1 1.00 - -
Parallel,ng = 2 - 4.58 8.87
Parallel,ng = 4 - 6.17 11.74
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