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Abstract

This paper introduces an original model to simulate the Haitdre between
concrete and reinforcing steel bars. The model was dewveltapbe used in three-
dimensional analyses within the framework of the Finitenk#at Method and for
general loading cases. It was designed using a hierardgigabach by combin-
ing what is called thdbase modelwhich acts as the skeleton of the model and
introduces the basic response under monotonic and reviesgitg, and four in-
dependent and optional sub-models used to enhance theationulvhen needed,
by considering the cyclic resistance degradation, the ptraks slip evolution, the
reload slip evolution and the radial streskeet.

The model implementation within the framework of the Fiitement Method
is described and its accuracy is assessed using a seriebdatioa tests. At the
end, the main conclusions extracted from this work are pitesle
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1. INTRODUCTION

For economic reasons, commaginforced concretgRC) structures are de-
signed in such way that they dissipate energy with largeastiel deformations
when subjected to severe earthquakes or other intensedaacks. In those situa-
tions, RC elements are exposed to high loading demandsahdead to a strong
nonlinear response.

A particular vulnerable component is the connection betwtbe reinforcing
bars and the concrete that in the scope of this paper will beddfeconcrete-steel
interfaces(CSI). These interfaces play the important role of trarsngjtforces be-
tween the reinforcements and the concrete and incorpdnatevéll-known and
complex longitudinal stress transfer mechanism, commecallgd thebond mech-
anism but also the radial stress transfer that develops at théseaces.

When the forces to be transmitted are too high, the perfeshextion be-
tween both materials is lost and relative displacementsirocthis can influence
the amount, size and distribution of cracks, potentiatddnigstifness and resis-
tance degradation, intense stress redistributions antt lesignificant changes in
the response. In particular, the hysteretic response maphdmcterized by long
branches with reduced ftess and pinchingfiects, which contributes decisively

to narrower cycles, and consequently, to lower hystericggndissipation.

2. PROBLEM FORMULATION

2.1. Modelling scale

The first issue to be taken into consideration is what scateldhbe used to
represent the bond mechanism. This is a fundamental aspeetal subsequent
modelling options will be influenced by this choice. The slfisation adopted by

Lowes [1] seems to be appropriate and may be summarizediasdol



Modelling the bond mechanism at tleélement scal@ising a global response
constitutive relation has the advantage of being extreractive from the com-
putational point of view, because all the inelastic respomscluding bond and
other inelastic sources, is included in a single forsedisplacement or moment
vs. curvature relation. The main drawbacks are related to nosidering the in-
elastic response distributed along the element and theeddadaptability to other
geometries and reinforcement configurations.

Adopting therib scalerepresentation of the bond mechanism all bond-related
elements are geometrically incorporated in the modeludfinly the ribs of the
reinforcements and the concrete keys between them. Thisos@bgy has the
advantage of being extremely general and potentially vecyrate. However, it is
necessary to adopt complex constitutive models and thétiresproblem-size is
generally only practical for local simulations.g.for model calibration.

A possible compromise solution would be to model the coeesétel bond at
the reinforcement scale This approach uses a single constitutive relation, com-
monly defined in terms of bond stregs. slip, to simulate all inelastic phenomena
associated with the combined response of the reinforcesugfasice and of the sur-
rounding concreteg(g.concrete cracking and crushing). This constitutive refati
usually requires the definition of interface elements thelude the reinforcement
surface and the surrounding concrete. The combinatioredddimd response into a
single model will mean that fferent bond characteristice.(. different rib types,
different levels of corrosion or fierent concrete casting conditions) will require
different bond constitutive relations. This approach is camsi to be the most

feasible and it is adopted in the bond model proposed in tijiep



2.2. Main quantities involved

Let us consider the small domain of the RC element repredéntEigure 1-
a. This domain includes the reinforcing bar, with diametgrand the surround-
ing concrete. For the sake of simplicity, this domain will densidered as two-
dimensional without compromising the generality of theniatation that can al-
ways be expanded to the general three-dimensional casstraightforward man-
ner. This domain has been subjected to a set of loads thatéddelative displace-
ments between the reinforcement and the concrete, as simokigure 1-b. The
relative displacements along the axis of the reinforcenmanuque'(xl) are com-
monly calledslips £x;) and the relative displacements perpendicular to the dxis o
the barq'ze'(xl) are addressed in this paper tagial relative displacementsx;)
or simply byopeningclosing displacements

According to Figure 1, for each point along the axis of thef@icement bar,

these relative displacements can be defined as follows:

af (%) = s(x1) = o — f = qf — o, 1)

g (xa) = r2(xa) = (0§ — &f) - (q% - qu) =5 - 0. )

The adoption of equations (1) and (2) implies the followingnsconvention:
positive slips correspond to protruding reinforcementthimedge with highegr;
coordinate and positive radial displacements implies mgemovements.

As represented in Figure 1-c, associated with the slipsaaidirdisplacements
are the bond stressg and the radial stress;». The equivalent global forces for the

domain represented in Figure 1 can be computed from:



L

Qs = fo 7P, dx,. 3)
L

QI’2 = ﬁ O-I'Z’dxl’ (4)

where P; is the contact perimeteiby unit length defined by the perimeter of a
circle with diameterps, and thus, neglecting the contribution of the ribs. These
expressions imply that, and o2 only vary alongx; and that the bond stress is

defined by perimeter unit, contrary to the radial stress.

3. MECHANICAL CHARACTERIZATION OF THE BOND MECHANISM

Most of the authors producing work in this field agree thatlibed between
steel and concrete results from the combinffida of chemical adhesion between
cement paste and steel, friction between surfaces and mieaheesistance asso-
ciated with the ribs. As a consequence, for ribbed bars, dmel Istrength results
from the combined strength of all these thrékeets, generally much higher than
the strength for smooth bars, where only adhesion anddnicontributes to the re-
sistance. Furthermore, the mechanical resistance atsbeiith the ribs includes
the shear resistance of the concrete between ribs and thineg associated with
the compression struts generated by splitting forces (Epad-2).

A recurrent way of studying the bond mechanism is by the amalyf experi-
mental results. The failure mode in basic bond tests, elgoputests, is likely to
be triggered by splitting or cylindrical cracks, or by coster cone failure or rein-
forcing steel yield. If the last two failure modes are avdidihe bond stresss. slip
relation for monotonic loading (see Figure 2) is mainly iefigced by the existence

of ribs and by the confinement level.



For what concerns the response under cyclic or alternatatinlg, the bond
performance presents additionalffstess and strength degradation caused by pro-
gressive micro-cracking and concrete crushing. Accordin&lB [2], the most
important factors influencing this degradation aretipe of ribsand theslip his-
tory, which can be quantified by thmaximum slipeached in both directiornsax

Apart from these quantities, other aspects influencing timelbmechanism are
the geometric characteristics of the ribs, the steel banéliar, the concrete char-
acteristics, the level of radial stress, the loading rate, éxistence of steel bar
corrosion, the occurrence of yielding and the bond-relatee dfect. More infor-

mation on these subjects can be found in the following refees [1, 2, 3, 4].

4. DEVELOPMENT OF THE BOND MODEL

4.1. Introduction

This section is devoted to the development of a new bond naeEfnated
Concrete-Steel InterfacCSI) model. The model is designed to be used in large
three-dimensional simulations that require all constityearts to be asficient
as possible. Consequently, considering the analysis mexbén section 2, it is
possible to conclude that the most feasible approach isel@ea semi-analytical
model implemented at the reinforcement scale.

The subsequent step is to define the phenomena to be incegdrathe
model, always by balancing the quality of the simulationimasfathe additional
complexity and computational cost to be paid. At first, thaeionust simulate the
main phenomena experienced under monotonic loading. liti@udt is designed
to be used under general loading situations, such as eak@dpading. Therefore,
it is mandatory that the model is prepared for dealing witlersed cyclic loading,

meaning that the cyclic degradation and other responsedegistics must be in-



cluded. Some féects, like the loading rate and the steel bar corrosion dammo
explicitly simulated by the proposed model. Nevertheléssse can be simulated
to some extent by adjusting the model parameters.

It was considered preferable to have a simpler model fortimnaeven if some-
times the local accuracy would be compromised, than a complethematical
definition. This option is supported by the assumption tbatréal situations the
global response of a reinforced concrete structural elénisemuch more influ-
enced by spatial bond failure variations than by compleallocodel definitions.
As a result, linear branches were most of the times used toebithe key points
used to define the model.

Finally, the formulation of the proposed bond model will leveloped in sev-
eral phases to separate as much as possible each featuoedandlbp a hierarchical-
based solution. The starting point is what is calledlibee modelhat will act as
the skeleton and includes the most important responseathastics. Afterwards,
this base is enriched with optional sub-models with the psepof simulating spe-

cific bond-related phenomena.

4.2. Base model

Figure 3 presents a schematic plot of the base model undeotoroa and

reversed cyclic loading. This model is characterized by:

1. Under monotonic loading (see Figure 3-a), the respomsts stith a stifer
linear loading branch with slogg,, until the slip valuesyy, is reached. Af-
terwards, another linear loading branch connects the @tigbordinates
(Spb» Tpb = KpbSpb) 10 the peak stress ay to = koSp). The peak stress is
followed by a softening branch tes, 79 = f170) and by a loading sliding

friction plateau at stress levelfl;



2. Under cyclic loading (see Figure 3-b), to cope with thi stiloading branches
observed in the experimental programg&ysslope is adopted for the unload-
ing branches. Under reversed loading, an unloading sliftintjon stress
is reached at stress leveld = forq, after the bond stress changes sign.
Reloading occurs in order to connect the friction stressudltgilip to the
peak stressg again aty. It should be noted that the §8r loading branches

with slopekpy, only occur for the first complete loading cycle.

Figure 4 compares the results obtained by this model witlatleeage mono-
tonic and cyclic responses reported by Eligehauseal. [3]. It can be easily
observed that the monotonic response can be very well siedulaith the base
model. On the other hand, under reversed loading, there lisaa diference be-
tween the experimental and numerical results. The mdiardnces are related to
the incorrect peak stress simulation after the first loading incorrect simulation
of the slip where reloading occurs and the incorrect sinanadf the peak stress
slip also after the first loading. In order to overcome theigicdlties, the base
model is enriched with a series of sub-models that are detiin the following
subsections.

The shape of the softening branch can be defined as nonligedrainging the
value of the parametex, defined afterwards in section 5. This parameter can be set
to zero resulting in a linear branch, or to values greater #aao that will result in
increasing smother transitions to the residual loadingepla Figure 5 illustrates
the dfect of this parameter in the numerical simulations previopsesented in

Figure 4.

4.3. Sub-model for the cyclic resistance degradation

The experimental data represented in Figure 6 was obtaipddlipehausen

et al. [3] by performing a series of pull-out tests under reversertling with re-

8



inforced concrete specimens constructed with commonawetimig bars and con-
crete. The data presents the ratio between the stress hefloading at cyclen

and the one for the first cycle. This quantity gives informatielated to the cyclic
resistance degradation and is considered to be strongliedeto the cyclic peak

stress ratio defined by:

n

7o
yo(n) = EE %)
0

Two distinct factors are presented together in Figure 6,ahaithe cycle am-
plitude and the number of cycles. These two factors can bebicwd into an

equivalent value by introducing the non-negative paramete

1 ncyc
s=—) % (6)
wherencycrepresents the number of cycles aqadepresents the absolute value of
the loading slip reached in each cycle and the sum is norathby the initial peak
stress slip. As an example, in the cases presented in Fighedycles have equal

amplitude, so the following expression may be used to coengut

Smax
%
The same data represented in Figure 6 is re-plotted in Figushowing a

s"=0@n+1)

()

clear trend and correlation with the proposed paramgteand relatively small
data dispersion.
The following expression is used to approximate the cycdeakpstress ratio

using the parametes:

vo(S") = aexp(-bs’) + cexp(-ds’) + e (8)



The unknown cofficients can be computed by a nonlinear fit usingibeenberg-
Marquardt algorithm [5, 6] resulting ina = 0.5838; b = 0.0792;c = 0.3456;

d = 3.8290 ance = 0.0887. The resulting curve is also presented in Figure 7 and
it is possible to observe the good quality of the data fit.

The adopted exponential relation (8) retuygéd) ~ 1.0 and converges asymp-
totically to the value atp(o0). Fors® = 100 it returns values already very close
(< 0.24%) to the value for very large values &f Thus, this function is truncated
ats* = 100 for simplicity.

Although the expression presented in equation (8) is ofosdhted to this
specific experimental data, it can be redesigned to be moergleand adaptable to
other situations. With that purpose, two new parametere weserted: i)y,es that
represents the residual cyclic resistance ratio afterfamtmnumber of cycles and
i) v, that can be used to change the shape of the curve and givedlexdodity
and generality to the sub-model. The enhanced expressgiveis by:

Yres

Yo(S") = 1 e {aexpbyns’) + cexpdyns)} + Yres. ()]

Changing the values of parametgts modifies the final value of the cyclic
peak stress ratio without changing the shape of the cureeHggire 8-a). On the
contrary, changing, has the oppositefiect (see Figure 8-b).

The implementation of this sub-model into the bond modelmadone simply
by scaling the peak stress value, previously defineddoy koS, using the fac-
tor {1 — yp(s*)}, wheres® is defined for the previous completed semi-cyclic using

equation (6):

75(S) = (1 - (8} 7o. (10)

Consequently, the loading and unloading residual stresteqls, which are

10



related to the peak stress, are now defined respectivelfyiyand forj. Figure
8-c presents a schematic representation of this sub-mgddimentation.

The same analysis case considered to compute the dataamecks Figure 4-
b can be re-used to compute the data represented in FigyreoBsidering now the
cyclic resistance degradation. Comparing both figures, jitossible to conclude
that this enhancement in the bond model has a large impabtiquality of the

simulation.

4.4. Sub-model for the peak stress slip evolution

The data collected in experimental results shows that fpevalue in which
the peak stress is reached is not constant for all the phhaesaterizing the bond
mechanism. In fact, this data shows an increasing tendématycan be related to
the fact that a higher relative displacement is necessamatailize all available
strength after concrete cracking and crushing.

This is clearly visible in the results obtained by Eligelaust al. [3], as
shown in Figure 4-b. This behaviour is considered an imporapect of the bond
mechanism. Hence, to improve the quality of the simulatioaub-model will be
added to the base model to simulate tHteet. The following assumptions for the

slip in which the peak stress is reached were adopted:

1. this value increases with the development of inelastenpmena at the in-
terface;
2. this value varies betweesy that characterizes the response for the virgin

state and the value for the beginning sliding friction pate.es.

The following expression is adopted for the sub-model:

Spk(S") = S0 + (Sres — 0) (%)) p : (11)
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wheresyy is the slip value in which the peak stress is reacinggis a non-negative
parameter used to change the profile of the evolution as shmweigure 9-a, and
s" is the parameter used before.

Figure 9-b presents a schematic representation offfeetef this sub-model

in the simulation.

4.5. Sub-model for the reload slip evolution

For the reloading branches, the experimental results alee that the slip in
which the stifness increases changes throughout the tests. This careatteaby
observed in the results obtained by Eligehauseal. [3] presented in Figure 4-
b. For this factor, a clear pattern cannot be observed foetiotution. It seems
indubitable that this slip value has the tendency to move tihé loading sliding
friction plateau. However, the starting and ending slipueal and also, the evolu-
tion pattern are not clearly recognizable from the avadatdta. Consequently, the
sub-model must be more flexible in order to adapt féedent situations.

The following expression is adopted to simulate the reldigdesolution:

N
S0 (5) = S+ (5 - ) 73] = S @2

where sg represents the slip value in which the reloading branchnseg is
the parameter used in the previous sub—modé’lI(;;represents the initial value at
s =0; sy corresponds to the final value sit = 100, and as beforay g allows
changing the shape of the evolution as represented in Figiee

Note that the signs of botbﬂd and sy, are not associated with the absolute
slip values. Instead, they correspond to a relative sliphicttvthe negative values
are associated with the anticipation of the reload branath thus, positive values
mean delaying the reload branch. It should be taken intoiderstion that if the

cycle amplitude is not enough to excezér’g, the reload fiset must be truncated to

12



this value. Figure 10-b presents a qualitative representaf the sub-modelféect
in the simulation.

Figure 11 presents a comparison with the experimental aetsidered previ-
ously. Itis possible to observe that adding the sub-modael$he simulation of the
cyclic resistance degradation, of the evolution of peadsstislip and of the reload

slip has significantly improved the simulation quality.

4.6. Sub-model for the radial stresgext

To introduce the radial stressfect into the bond model, it is necessary to
have information about the stress in the surrounding ceecredifficulty emerges
because the concrete stress is not reflected in the inteefaogent that is used
within the framework of the Finite Element Method. A possilgolution is to
enhance the state determination of the interface elemehtinfiormation from
other elements. This will be performed by adopting a procedimilar to the one
used for the nonlocal regularization technique to cope Veithlization problems
[7, 8].

The first step is to compute the perpendicular direction ®ittherface axis
in the direction towards the reference Gauss point. Thisbeaperformed by the
following procedure.

Let us consider the two Gauss points drawn in black in Fig@reThe Gauss
point labelledG P, belongs to the interface element and the one lab&iBdis
part of the surrounding concrete. It is possible to definauthievectorv, with the

direction connecting the position of these points, usirgrtblobal coordinateX:

XGPk _ XGPref
’XGPk — XGPref” )

V1 = | (13)

Another unit vector can be defined with the direction of thetizd axis of the

interface element. Considering that a zero-thicknessfade element with linear

13



geometry is used in the implementation, this direction cacdmputed using the

expression:

XII _XI

= X (14)

V2

whereXX is the global coordinate of the local noke
Note thatv, andv, are not necessarily perpendicular to each other. To correct

this, the following equation can be applied:

V3 = Vo X V1, (15)

and finally, the unit vecton that is perpendicular t@, and points toward& Py is

given by:

n =v3 XV (16)

The radial stress is the component of the stress vectorgaittithe direction

defined byn and it can be computed using:

Orad = Ojjnin;. (17)

A weighted average value for the radial stresg is used to improve the qual-
ity and representativeness of the stress value in the swdiogi concrete, by com-
puting:

nGP
Orad = Z (0rad W)k (18)
k=1
whereW is the weight associated with each Gauss point (GP) selected

The selection of the eligible Gauss points and the commutatf the weights

can be made using a similar approach to the one used in nbrdonatitutive
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relations [7, 8] by using th&aussian functioror thebell-shaped functiof9]. A
new parameter called thmnd length k is introduced to characterize the width in
which the bond mechanism develops. This way, the weightadi &auss point
can be computed from:

1

_ GPre GPy
ng_mf(Lb,X r,XCR), (19)

where XCPret and XGP« are the coordinates of the reference and of the selected
Gauss points. To enforce that the sum of the weights is ynitae parametew,q;

is computed from:

nGP
Wot = > Wh. (20)
k=1
The final step consists in defining the sub-model for the taliass &ect.
This is done using the parametgrwhich dfect is represented in Figure 13 and

defined by:

Era My i
o+ (- —no) (“Gd)" <n-, if oraa <0
n(0rad) = 1o if orag =0, (21)

no+ (7~ 10) (Z28)™ >0, if oaq > O
wherernyg is the value of the function in the absence of radial stressndn, are
the values fowrrag = —fc and fororag = 0.1f; , respectively, and,,— andn,. are
exponents used to define the shape of the function for negatigt positive values
of the radial stress. The reference value dffgwas adopted to avoid the explicit
definition of another parameter.
One possible way to introduce thiffect into the bond model is to scale the

reference slipsp, and sy, using the following expressions:
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Spb (17) = Spb (110) 7, (22)

so () = s0(mo) n. (23)

This would result in the desired uniform change of the peadsses and of the cor-
responding slip values. However, it does not change theeslopmost branches,
even when the radial stress changes throughout the anagssemplified in Fig-
ure 14-a for constant radial stress. Furthermore, the hegrslip for the resid-

ual friction stress leveks is considered to be unchanged by the radial stress.
These assumptions are supported by observations made erine@ptal results

[3, 10, 11, 12]. Figure 14-b presents an example of the datigé relation with

constant and without the radial streskeet for reversed cyclic loading.

5. MATHEMATICAL FORMULATION

5.1. State determination algorithm

The bond model is defined by the parameters presented in Taailal the

constitutive relation adopts the following expression:

Th = Kyl (S— She) , (24)

wherek is the unloading sfiness ands is the inelastic slip.

A bond envelope functiony is defined for the positive and for the negative
limit of the bond stress. Taking advantage of the fact theséhare odd functions,
it is possible to write a condensed expression that can luefaseither the positive

and negative envelops

1The symbok: should be replaced by-aor a— sign, resulting in the positive and negative limit

of the envelope function
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¥ o1pk(1-12) .
5 £ fargipk £ s (£5— Sd) - if S1g < £S< Spk
b = )
. N .
8+ /1{70 (Upk - flTo) + TSS:]TZ;)? (iS— Spknpk)}, if Spk < £S< Ses
+, if Ses< £S
(25)
with:

o= forgr B=firgn 5= (1= y)koSoi 4= exp(-Coik ). (26)

—Spk?7pk

During the first load, the envelope function is changed to:

KpbS, if |8 < Spo7pk
= . (27)
KoSo—Kpb$, :
+KpbSpbi7pk + spngbm (S— Spbﬁpk), if Sphrrpk < |9 < Spk

ASS
o H

The symboly, refers to the value of parametgdefined in equation (21) when
the peak stress is reached. This value is used to define e agfdhe softening
branch, so it must be stored until the end of each loadingecycl

The admissible values for the bond stress are limited by diséipe and nega-

tive envelope functions:

¢ < b < . (28)

This condition must be satisfied in the state determinationgdure. With that
purpose, the following procedure may be adopted: i) Comitnadrial bond stress
7ial for the current slip value using the expression (24); iy violates the

limits imposed by equation (28) then correct the inelasift e using:
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Sne = S— ¢§/kul, (29)

where in this case; should be replaced by the violated envelope function.

5.2. Stifness matrix

The total derivative of the bond stress must be computeddardo obtain the
tangential components of the interface elemefiiress matrix. As seen before, the
bond stress is a function of the slip and a set of state paexsttat only changes
between cycles, with the exception of radial stress thatatemge without any
constraint. Therefore, the total derivative can be expess:

otp O0tp

drp = %dS'l‘ 6_77dn (30)

It is not possible to compute the terén,/dn within the element scope, as
parameter; depends omr 54, Which is defined by the averaged information from
the surrounding concrete elements.

To mitigate this problem, the model was developed in such thalythe slope
of branches #1, #2 and #6 represented in Figure 15 ardlieated by the changes
of oraq. In these cases, quadratic convergence may be achievedf ¢hemadial
stress changes. On the other hand, for the other branchgsabeatic convergence
is lost. Nonetheless, even in those situations the conmeegeeveals to be quite
efficient and fast, as a consequence of the changes of sloperbkitigely small.

The termdtp/dsin equation (30) can be computed for each branch represented

in Figure 15, from:
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Kob case #1
—k"z‘;:gZ:pb, case #2
—gf;(k:;);zk case #3
07005 = ;(fi”Tm case #4 (ifcg = 0) - (31)
0, case #5
Kul, case #6
0, case #7

For case #4, wheos > 0, the derivative turns into:

* 75(5-1pikSpi) (FL7-1p) 3

8Tb _ Cs {TO (fln - npk) - Sres—Spki7pk TO (flﬂ - 77pk)

as cs('s—Spirrpk) cs('s—Spirpk) .
eXp{ Sres—Spk7pk (Ses - Spknpk) exp Sres—Spk?7pk (Ses_ Spknpk)

(32)

6. MODEL IMPLEMENTATION

A discontinuity in the displacement field is created when tbad between
reinforcement and concrete starts to fail. This discortyntorresponds to relative
displacements between adjacent points in the domain. Isdbpe of the Finite
Element Method, these displacement discontinuities casirhalated in several
ways. It is possible to classify them aselgment-basedvhen the discontinuity is
embedded inside the element and no mesh modification isregtjund ii)mesh-
based when the discontinuity simulation requires the additidmodes angbr
special interface elements. This latter approach is addptthis work.

Although the so-callethanging nodesvere not adopted in this work, they can

introduce some advantages into the simulation, in pagidalr the concrete mesh

19



generation, resulting in a reduction of degrees of freedaising this approach
the reinforcement nodes are not required to be coincidetft the concrete ele-
ment nodes, as they can be located on their ¢figes, and the concrete displace-
ments may be computed from finite element interpolationsis Téchnique has
been addressed by several authors [13, 14, 15] and intessarch is being made
in the integration with theeXtended Finite Element MethdX-FEM) [16], e.qg.
[17, 18, 19].

For what concerns the meshing technique, interface elenientarallel with
the main domain are adopted. This technique presents sowaatades related
to the fact that the mesh is simpler to be generated even fee-tiimensional
analyses because the concrete sub-domain i§aated and continuous. Its main
disadvantage is that the interface element is insensitiibe stress state on the
concrete domain.

The type of interface element to be implemented is anothimmthat needs to
be taken. Zero-thickness elements are adopted in this warkalits formulation
and implementation simplicity and to the fact that accuraseilts can be obtained.
These elements were originally developed by Goodetah [20] and enhanced by
Beer [21] and Carol and Alonso [22] that presented an isopatidc zero-thickness
element to be used for interfaces. The element works as iomendional due to
the consideration of the mechanical formulation in therfiate mid-plane.

Another option would be to adopt thin-layer elements [23,25} 26]. These
elements consider that the interface mechanism occursanrevn finite zone and
models the interfaces as thin continuum elements. Thisitgoh was not adopted
because setting the correct thickness for each problemanitibjective procedure
is sometimes not easy to accomplish and numerical problewss Iheen reported
for some types of these elements with very small thicknegsdegenerated stan-

dard continuum elements [4].
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6.1. Interface element

The interface element combines the CSI model describeceiprvious sec-
tions and additional elastic models for the radial direwiovhich are defined using
large numerical values for the fitiess. The objective is to impose near null radial
relative displacements between the steel and concreteesteradopting a proce-
dure similar to a penalty method.

The isoparametric zero-thickness interface element meghdy Beer [21] is
adopted. The element kinematics includes the longitudiglakive displacement
(slips) and the radial relative displacements (opening eodure movements).

These kinematic variables can be joined together in thevidtig vector:

t
qe = [ S K I3 ] , (33)
wheres devotes the slip between concrete and reinforcement;amresponds to
the radial relative displacement (openfirigsure) along the local directian
The associated static variables can be grouped in the fioldpsiress vector:

t
oc=|1 012 Or3|> (34)

wherery represents the tangential stress (bond stress) creatée Isjigs andr;
are the radial stresses associated with the radial dispkealong the local direc-
tioni.

The following expressions are adopted for the element nmgpj2i1]:

X0 = gy YW+ g (35)
%P =y eV, (36)

and for the relative displacement approximations [21]:
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R =y ol + g, (37)

& = 0 @)

where the shape functiogg are defined as first order polynomials (see Figure 16).
The relative displacement approximations can be computed the top and
bottom edge displacements (see Figure 16), using [21]:

o' = o - o™ = vag "+ vag M - vagld - vagt. (39)

Note that for dynamic analyses the velocity and accelerajgproximations
can be computed from similar expressions to those presémtéuk displacements
in equations (37), (38) and (39).

This formulation results in a model that directly relates stresses with the rel-
ative displacements. Hence, the compatibility equatiosasat similar to the ones
used in the continuum mechanics framework, which invohasvdtives. Instead,
they are simply defined by dllerences between displacements.

The compatibility relations can be computed from:

9 =Baq, (40)

with:

-1 0 0 | —y» 0 0 |y O Oly, O 0
B=| 0 —y1 0| 0O —y2 0 |0 ¢y 0|0 w43 O [. (41
0 0 -y1] O 0 Y210 0 yY2[0 0 Y1

The following constitutive relation is considered for tikerface element:
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o = k* (qrel _ q{ﬁé), (42)

wherek* is theinelastic constitutive tensand q{ﬁé corresponds to thmelastic

displacement vectpnon-null only for the slip component:

ki 0 0
k"=| 0 ka2 0 |, (43)
0 0 ks
t
qirr?(la = [ Sre 0 O ] ) (44)

wherekg represents theecant moduludefined byks = 7p/s.

The stitness matrix can be obtained from [27]:

1
K = f B! (ya) k* B(y2) detd (v1) dya. (45)

-1
and thesecant sffness matrixcan be computed using the Gauss-Legendre quadra-

ture:
ngp

Ks= Z B (yl)gp kap B (yl)gp detJ (yl)ngg p- (46)
gp=1

whereld is the Jacobian matrix andlis the quadrature weight associated with each
Gauss point. In this work, two Gauss points were used to ctenihie previous
expression.

The use of théangent siffness matrixcan enhance the computationii@ency
of the numerical model by increasing the convergence ratds matrix can be

computed using [28]:
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_9Qi_ [ gde
K= 7 _fB aqu’ (47)

whereQ; represents thimternal force vectar

Considering the relation (40), the stress derivative teambe computed from:

do  do a9 oo B
oq oqe oq  oqrel

where for the radial components the/dq™ term corresponds to the radialfgti

(48)

nessk;; along each radial directionas in equation (43). On the other hand, the
bond-related component is given 8y,/ds, defined in Section 5.

As before, the sfiness matrix can be computed using the Gauss-Legendre

quadrature:
| ngp Py
K§'= > 8 (yl)gp(W) B (y1)gp detd (Y1)gp Wyp. (49)
gp=1 ap
with:

It
; 2P 0 O
o
W = 0 ko 0 [, (50)
0 0 ks

whereP, is the contact perimeter described in Section 2.

7. EXAMPLE1-PULL-OUT TESTSBY ELIGEHAUSEN, BERTERO AND
POPQOV

The objective of this example is to simulate the responsé@epull-out tests
performed by Eligehauseet al. [3]. These tests were considered as an ideal

case for a first validation, because there is an extensiveiginod data available
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and a short anchorage was used,(5 127 mm), which creates a nearly uniform
response throughout the anchorage.

Figure 17 presents the main geometric and mechanical dbesdics of the
tests. A plane model was used to simulate the experimentrendancrete was
modelled with isoparametric 4-noded elements (Q4), adgpn elastic constitu-
tive relation. The steel bar was simulated with elastic EBlernoulli beam (EBB)

elements, although one-dimensional truss elements ctaddhave been used, sim

ilar to what was done in Example 2. The interface elementsadelled using the
proposed CSl element. All the parameters required by theeta@dle presented in
Table 2.

This series of tests was executed by prescribing a set of-gtaie displace-
ments and measuring the equivalent force on one side of tdteuding steel rein-
forcement bar (point A on Figure 17) and by measuring thelaigment on the
other side of the bar (point B). A set of boundary conditioreyevenforced at the
concrete nodes near point A, as presented in Figure 17.

Three static analyses were performed (see Table 3). In ghafialysis a mono-
tonic displacement is imposed and no active confinementafrattess) is taken
into account. The second test simulates the reversed egdmnse of the inter-
face, again with no imposed radial stress. Tlie@ is studied in detail in the third

analysis by considering four levels of radial stress.

7.1. Case 1 - Monotonic loading with no radial stress

Figure 18 presents the results of the analysis #1 expressediagram relating
the constraint force at point AJc) and the displacement measured at poing&).(
These values are compared with the average value of the gfoupnotonic tests
carried out by Eligehausest al. [3] expressed in terms of bond strass slip. As

one will see further on, the structural response reveatgtiesbehaviour of the in-
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terface is not uniform. However, the variations are minimamd consequently, it
can be assumed that a good approximation can be obtainedgren®./Ac, where
A is thecontact areagiven by thecontact perimeter Pmultiplied by thecontact
length L. This relation considers that the force associated wittpteecribed dis-
placement can be transformed into the equivalent bondssaesuming a uniform
stress throughout the anchorage length. The bond strebtgise through this
relation will be represented bz;ﬁq and denoted by thequivalent bond stres®
avoid confusions. Figure 18 was drawn using two verticakakat were scaled
using this formula to enable a direct comparison. For sicitglithis hypothesis
will be adopted throughout this example.

The results presented in Figure 18 show a very good matcleketiihe exper-
imental response obtained by Eligehauseéal. [3] and the numeric data obtained
with the numerical model. The model was capable of repradyall the phases of
the monotonic response, namely: i) the initialfsti loading branch; ii) the it
ness decrease until peak stress is reached,; iii) the pesis stalue; iv) the softening
branch and v) the sliding friction residual stress.

Figures 19, 20 and 21 present a series of numerical resuégel at the Gauss
points of the interface elements at peak forgg{ = —1.975 mm, step #79).

Figure 19 represents the slip variation and these resutisrcothat this vari-
able is not uniform along the anchorage. As expected, the alie larger near the
loaded edge and smaller at the other end. This figure alscssthevplot of the bond
stress along the interface, revealing that the stresshdigtm is also not uniform,
although the variations are relatively small. It can be dbanthe interface zone
for x > 200 mm is still loading and that the zone closer to the loadind, with
smallerx values, is already in the softening branch. Hugiivalent bond stress
(qu) that is obtained by assuming a uniform slip distributioralso presented in

this figure using a dotted line. It is possible to conclude this approximation is
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feasible and can be used for the analysis of the results witinar loss of accuracy.

Figure 20 presents the axial stress distribution alongehdarcement bar. As
expected, it can be seen that the stress is approximatelgromalong the first
and last third of the bar length, as the reinforcing steelibarot connected to
the concrete by interface elements in those regions (sagd-ity7). Inside the
specimen, the stress gradually reduces to zero due to thad¢pand boundary
conditions.

The concrete stressyy distribution is also plotted in Figure 20 for the Gauss
points closer to the interface. The results show comprasgi@sses near the load-
ing edge, tensile stresses near the free edge and a trarmitie in the middle of
the specimen. This observation is confirmed by the concrateipal stress vec-
tors at peak force represented in Figure 21. Furthermoisg,visible that along
the bond length, the transition from a predominant comprads tensile states is
accompanied by a rotation of the principal stress direstmeating radial stresses

(see Figure 21).

7.2. Case 2 - Reversed cyclic loading with no radial stress

This analysis has the objective of testing the model in theukition of pull-
out tests with reversed loading. The model parameterssiegllin Table 2 and are
identical to the ones adopted for the monotonic loading,cadtt the inclusion
of calibrated parameters for simulating the cyclic resistadegradation, the peak
stress slip evolution and the reload slip evolution. Thexpeaters related to the
radial stress féect were left neutrali.e. with no dfect on the simulation. The
loading history for this analysis is indicated in Table 3.

The equivalent bond stress. slip diagram is presented in Figure 22 and is
plotted against the experimental data obtained by Eligedraet al. [3]. It is

possible to observe a good match between both curves antudertbat the ex-
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perimental response was simulated with a good level of acgur

7.3. Case 3 - Monotonic loading with variable levels of rdditiess

The objective of this analysis is to assess the capacityegithposed numerical
model to simulate theffect of active radial stresses.

The starting point of this analysis is to calibrate the sutdei for the radial
stress #ect defined in Section 4 with the pre-existing data from teester his was
done by fitting this data using theevenberg-Marquardalgorithm [5, 6], in order
to find the best values for the parametgrsandn,_ associated with compressive
radial stresses. The resulting sub-model curve is predant&igure 23-a and
reveals a very good match with the experimental data, shpthiat the sub-model
is flexible enough to reproduce this data. In addition, nonmiation is available
for characterizing thefiect of tensile radial stresses so that no data fit was made
for the sub-model parameters associated with the tensiteaitp which were left
neutral,i.e. with no dfect on the simulationzf, = 1.0,n,, = 1.0). This dfect is
only relevant for the case where no radial stress is appliditket specimen, because
radial tensile stresses can occur in the interface. Inldratases, the compression
stresses are enough to eliminate this possibility.

For this simple two-dimensional analysis case it is posdibpresent a schematic
representation of how the nonlocal radial stress is congputeFigure 23-b it can
be seen that for each interface Gauss point, a group of denGauss points are
chosen using a criterion related to the adoptedd length k. The bell-shaped
functionis used to compute the weights of the Gauss points [9] ane: trasies
are represented in Figure 23-b by the shade level of eachs@airgt, using blacker
shades for larger weights and lighter shades for smallgght&i

A series of analyses were performed for the four levels obisepl radial stress

orad = {0.0,-5.0,-10.0, -13.2} MPa, which were applied in the first loading step
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and kept constant throughout the analysis. The equivalend Istressss. slip
diagrams are presented in Figure 24. The results show a vexymatch between
the numerical and experimental results, not only in termthefcalibrated peak
stress, but also in terms of the shape of the loading, soffesund sliding friction
plateau.

In addition, Figure 25 presents the computed nonlocal radiasses along
the interface elements at the steps associated with bramicthgg points on
Figure 24-c. As mentioned before, the pull-out forces gateeadditional com-
pression and tension stresses at the interface (see Figyredlas expected, the
radial stress distribution is not uniform along the ancheréength. Moreover,
higher radial stress variations occur when the pull-outdds larger (peak stress

atQmp = —2.375 mm).

8. EXAMPLE2-PULL-OUT TESTSBY LA BORDERIE AND PIJAUDIER-
CABOT

The pull-out tests performed by La Borderie and Pijaudiab& [10] are used
to validate the model in a three-dimensional analysis cBise.geometric and me-
chanical characteristics of this experimental programiogether with the mesh
and boundary conditions adopted are summarized in FigureTh@ anchorage
length is 45 mm, approximately.@s, which can be classified as a small anchor-
age. Hence, it is expected that the strain and stress fieldbemiearly uniform.
Table 4 lists the details of all models used. The concrete madelled using
elastic (model #1) three-dimensional isoparametric 8edoldexahedral elements
(H8), the reinforcements were modelled with one-dimerdi@tastic (model #2)
truss elements (L2) and the concrete-steel interface iglated using the proposed

CSI model (model #3).
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Four analyses were performed by changing the radial stnebsth horizon-
tal directions tooag = {0.0,-5.0,-10.0,-15.0} MPa. The load was imposed as
a monotonic quasi-static displacement at the protrudiagl tar. As before, the
parameters for simulating the radial streffee were computed by fitting the ex-
perimental data, using theevenberg-Marquardalgorithm [5, 6], by finding the
best values for the parametersandn,_ for the compression domain of the radial
stress equation, leading#g = 1.000,7_ = 1.293 andn,- = 0.347.

For the analysis with no radial stress, Figure 27-a presegtaphical represen-
tation created from the,, values at the concrete Gauss points. This figure shows
the expected stress distribution, with stress conceatrsitiear the extremity of the
bar embedded in the concrete and near the protruding bar zone

The tensile stress concentration inside the specimen cesldt in cracking
and the elastic model used to simulate the concrete respaassaot able to cap-
ture this é€fect. Nevertheless, thidtect is only local and would not significantly
influence the pull-out test results. Furthermore, the asti@ss distribution along
the reinforcing bar is presented in Figure 27-b. These tesohfirm the gradual
stress transfer between the steel bar and the concrete.

In Figure 28, the applied forces. the prescribed displacement at point A is
plotted for the four tested cases of radial stress, togettibithe experimental data
obtained by La Borderie and Pijaudier-Cabot [10]. From thalysis of this fig-
ure it is possible to observe a good match between the expetairand numerical
results. In particular, setting the parametgto values greater than zero made pos-
sible to follow with greater accuracy the softening brantthe bond mechanism.
Moreover, it is possible to conclude that, after being catibd, the model was able
to accurately simulate the behaviour observed in all ths tes

Figure 29 presents the axial stress along the steel reinfpbar for the analy-

sis without radial stress. The stress distribution in tleelsteinforcement reveals a
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smooth transmission of forces into the concrete, confirmihgt was observed in

Figure 27-h.

9. CONCLUSIONS

This paper introduces an original bond model to simulatertbehanical inter-
action between concrete and reinforcing steel bars, whatelbbeyond the perfect
bond limit. The model is deemed to be used in three-dimeasiamalyses within
the framework of the Finite Element Method and for generatling cases.

The so-called CSI model makes possible to include an exeehsi of phenom-
ena dfecting bond mechanism, which led to 22 model parameters. fthiber is
considered high and a drawback of the proposed model. Tgatstithis problem,
the bond model was developed using a hierarchical apprdgctiefining a base
model with 9 parameters and a group of 4 sub-models for thelation of the
cyclic degradation, the peak stress slip evolution, theaekklip evolution and the
radial stress féect, using 2, 1, 3 and 7 additional parameters, respectiviys
hierarchical approach makes possible the use of the modeé¥ersed loading
cases by defining only the 9 parameters required for the badelrand by setting
the other parameters to default values. Each sub-model eaulded only if the
simulated phenomenon is significant for the response. Assaralb assessment,
it is possible to stress that the proposed solution presebi@anced and robust
way to simulate the large majority of the phenomena thatadtarize the bond
mechanism.

The use of zero-thickness interface elements to simulate failure within
three-dimensional finite element meshes revealed to besibfeand reasonable
procedure.

Taking into consideration the results from the validatiaraples presented
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in this paper, it is possible to conclude that the proposetibuodel is able to
simulate with a very good accuracy level the bond responsereed in pull-out
tests, both for monotonic and cyclic loading.

At this stage, it would be very interesting to continue thedeialidation with
other test results, in particular, with long anchoragesgispens and with data from
dynamic bond tests. Furthermore, taking advantage of hgngbdes to simplify

the concrete mesh generation is another improvement sigluefiu future work.
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Figure 1: Denomination of the basic CSI quantities
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Figure 2: Typical response under monotonic loading, adbfoten FIB [2].
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Figure 3: Schematic representation of the base model.
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Figure 4: Base model - Comparison with experimental data.
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Model parameters in (d) are the same of Figure 4and= 0.0887,y, = 1.00.

Figure 8: Sub-model for the cyclic resistance degradation.
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Model parameters in (a) = 1.65 mm,Ses = 125 mm.

Figure 9: Sub-model for the peak stress slip evolution.
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Model parameters in (a), = —1.5 mm,sy = +1.0 mm.

Figure 10: Sub-model for the reload slip evolution.
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Figure 11: Comparison of the results obtained with the pseddond model with experimental data.
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Figure 13: Radial stresdfect: Influence of the parameters on the shape of the fungtion
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(a) schematic representation (b) comparison with experimental data

Model parameters in (b) are the same of Figure 8@ndf. = 0.50,70 = 1.00,n_ = 1.30,
n,. = 0.60,7, = 0.40,n,, = 1.40.

Figure 14: Radial stresdfect for reversed cyclic loading.
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Figure 15: Bond model branch numbering.
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Figure 16: Zero thickness 4-noded isoparametric interéement.
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Figure 17: Example 1 - Geometric and mechanical charatitsrsnd mesh used in the analyses.
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Figure 18: Example 1 (#1) - Response under monotonic loading
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Figure 19: Example 1 (#1) - Bond stress and slip variationghe interface at peak force.
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Figure 20: Example 1 (#1) - Steel axial stress and surrognclimcrete stress at peak force.
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Figure 21: Example 1 (#1) - Principal stress vectors in threoete elements at peak force.
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Figure 22: Example 1 (#2) - Equivalent bond stressslip.
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Figure 23: Example 1 (#3) - Radial stress sub-model.
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Figure 24: Example 1 (#3) - Thefect of the radial stress.
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Figure 25: Example 1 (#3) - Computed nonlocal radial stiesdeng the anchoragerfy =
-100 MPa).

62



Reinf. steel bar

¢,=8 mm Tq””l’
f; =14.5 MPa _ O i A§ O
"""""""""" d T 110 mm
é § 45 mm
5 = 5| - _
z o i
@ :
x N 1
Yy Q&Q 40 mm 40 mm
1 S | . .
80
= s A=PIL=251x4.5=11.295cm’
Mesh:
4.
N no interface elements
e — CSI interface elements
> T
Eggg reinforcement
gii/g Elements:
o Concrete: 64 H8-Elast
« ;‘\j\iryﬁi;' CSI interface: 9 Q4INT-CSI
PN Reinf. Steel: ~ 11 L2-Truss-Elast
+ 463 dofs + 1 prescribed displacement

Figure 26: Example 2 - Geometric and mechanical charatitsrisnd mesh used in the analyses.

63



o’zga(ﬁljpa) O'H (kPa)
l2530 2.5117e+05
1197 l2.2482e'05
--135.97 * 1.9846e+05
. 1469 - 1.7211e+05
2802 ] 1.4575e+05
2 o
I-sam €T y B6682
e Yoo
(a) o;;in the concrete elements (b) axial stress distribution in the reinf. steel bar

Figure 27: Example 2 - Analysis without external radial s$r¢aq = 0.0 MPa,0jmp = 1.20 mm).
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Figure 28: Example 2 - Thefect of the radial stress on the monotonic response.
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Figure 29: Axial stress distribution along the interfacetadsen stepssaq = 0.0 MPa).
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Table 1: Bond model parameters.

Param.| Unit Definition Domain
Kob Pam perfect bond tangent fiiness [0, o0]
ko Pam monotonic secant $thess at peak stress [0, o0]
Kul Pam unloading stifness [0, o0]
Spb m monotonic perfect bond slip limit [0, o]
S m monotonic slip at peak stress [spb, s(es]
Ses m slip at the beginning of the loading residual stress [sg, o]
f1 - loading residual stress ratio [0, 1]
fa - unloading residual stress ratio [0, 1]
Cs - controls the shape of the softening branch [0, o0]

Yres - vp ats' = 100 [0,1]
Yn - controls the evolution ofy, [0, 0]
Npk - controls the evolution 0§y« [0, 0]
S m reload slip fors* = 0 —Sres, Sy
S m reload slip fors® = oo —sﬂd, Sees
Nrig - controls the evolution ofq [0, o0]
Lp m bond length [0, o0]
fe Pa concrete resistance under compression [0, o0]
no - value ofy for orag = 0 [0, 0]
n- - value ofn for oaq = —f¢ [0, o]
N - value ofr for oyaq = 0.10f; [0, 0]
n,- - controls the evolution of for negative values af g [0, o0]
N+ - controls the evolution of for positive values ofraq [0, o0]
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Table 2: Example 1 - Model parameters.

M odel

Type

Parameters

#1

Elastic

E =305GPav=0.20 t=0.178m (plane stress)

#2

EBB

E = 2000 GPay = 0.30, A = 5.067 cnf, |, = 2.043 cnf

#3

CSlI

Kpb = 3294 GPam, kg = 8.235 GPam, ky = 90.0 GPdm,

Koz = Koz = 1000 GP#am, spp = 0.343 mm s = 1.70 mm

Ses = 1050 mm ¢s = 0.0, f; = 0.35, f, = 0.00, yres = 1.0, y, = 1.0,
npk = 1.00, sﬂd =0.00 mm Sy = 0.00 mm ngg = 1.00, |, =0.00 m
fc=00MPa no =10, - =10, », =10, n,_ =10, n,, =10

#

CSlI

Kob = 9.50 GP#m, kg = 8.235 GP#m, k; = 90.0 GPdm,

Koz = koz = 1000 GP#am, spp = 0.343 mm sp = 1.45 mm

Ses= 1200 mm cs = 0.0, f; = 0.47, fo = 0.25,y1es = 0.45,y, = 3.5,
Npk = 0.57, s, = =3.00 mm s, = 9.00 mm nyg = 0.55,1, = 0.00 m
fo=0.0MPa 5o = 1.0, 7_ = 1.0, 7, = 1.0, n,_ = 1.0, n,, = 1.0

#5

CSlI

Kpb = 8.35 GP#m, kg = 8.235 GP#m, k; = 90.0 GPdm,

Koz = Koz = 1000 GP#m, spp = 0.360 mm sp = 1.70 mm

Ses = 1100 mm cs = 0.0, f; = 0.36, fo = 0.00, yres = 1.0, y, = 1.0,
npk = 1.00, sﬂd =0.00 mm Sy = 0.00 mm nyg = 1.00, I, =0.02 m
fc=300MPan =1.0,p- =1.293 5, = 1.0,n,_ =0.347,n,, =10
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Table 3: Example 1 - Characteristics of the analyses

Analysis Models (see Table 2) L oads (see Figure 17)
#1 Conc. #1, Reinf. #2, CSI #3 gimp (Monotonic)
orad = 0.0 MPa
#2 Conc. #1, Reinf. #2, CSI #4 gimp = {0.0,2.7,-2.7,130} mm,
orad = 0.0 MPa
#3 Conc. #1, Reinf. #2, CSI #5 gimp (Monotonic)
orad = {0.0,-5.0,-10.0,-132} MPa
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Table 4: Example 2 - Model parameters.

Mode | Type | Parameters

#1 Elastic| E = 155 GPa v = 0.17

#2 Elastic | E = 2000 GPa,v = 0.30, As = 0.5026 cn¥

#3 Csi Kob = 14.40 GPam, ko = 9.72 GP#m, k, = 90.0 GPdm,
Koz = koz = 1000 GP#am, spp = 0.68 mm sp = 1.15 mm
Ses = 2500 mm cs =28, f; =0.09, f, =0.00, yres = 1.0, y, = 1.0,
Npk = 1.00, sy = 0.00 mm sy, = 0.00 mm nyq = 1.00, I, = 15 cm
fo=145MPa no = 1.0, n- = 1418, = 1.0,n,_ = 1562 n,, =10
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